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I. INTRODUCTION

1.1 Motivation and Discussion of Problem

Reliability and availability have become two of the prime

considerations in the design of control systems for a diverse group of

applications that includes flight control systems for both aircraft and

spacecraft. Considerable effort is now being devoted to the design of

highly reliable control system components and to the design of fault-

tolerant processors for online control computations. Despite the success of

some of these efforts, the extremely high reliability goals that are

becoming commonplace in the Air Force and elsewhere can often be met only by

designing control systems with built-in component redundancy. The

combination of a redundant system architecture and a redundancy management

(RM) algorithm constitutes a fault-tolerant system design.

Predicting the performance of these designs is an important and

difficult problem. The performance is judged by such quantities as the

reliability, the availability, or some other probabilistic quantity such as

average measurement accuracy or average regulation error. Calculating these

quantities is an important problem because they represent the criteria by

which various fault-tolerant system designs are judged. Such calculations

are difficult because fault-tolerant systems are subject to random events,

such as failures and RM decisions, that change the nature of operation of

the system and therefore affect the values of the performance quantities.

Several papers and theses have introduced the concept of modelling the

random behavior of a fault-tolerant system by generalized finite-state

Markov models [1-6]. The states in these models characterize the status of

the system in terms of the number of components that are operating, the

number of these that are failed, and the status of the RM decisions. The
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transition behavior among these states Must then be derived from the

probabilistic behavior of component failures and of the RM decisions

(including errors such as false alarms and missed alarms). Once this

characterization is complete, the resulting Markov model (or, more

generally, seMi-Markov model) can be used to derive the statistics of any

relevant quantity that is dependent upon the status of the system. Among

these are the reliability and availability of the system, but the statistics

of other quantities such as the time to first passage of a particular system

status or a performance measure dependent on the system state history can

also be calculated.

Despite their obvious utility for fault-tolerant system performance

analysis, these models suffer from one serious drawback that has

considerably limited their use. That drawback is that they tend to be

computationally intractable even for relatively simple fault-tolerant system

architectures. This intractability is the result of a number of factors:

1. The number of states can be large, particularly for complex systems

comprising many components. Essentially, there are as many states in

the model as there are distinct combinations of failed and unfailed

components and RM decision statuses for which the system remains

operative. Even the exploitation of symmetry and similar component

behavior to reduce the model order can still leave a very large number

of states in the final model.

2. The transient behavior, not the steady state behavior, is of primary

interest. Because the components are subject to failure, the steady

state for nearly all fault-tolerant systems is complete failure. Even

when recovery of components is possible, the steady state may not

become established until more time has elapsed than the useful lifetime
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of the system (see comment 14 below). In either case, the transient

behavior becomes the behavior of interest and steady state analysis

techniques do not apply* This is particularly unfortunate when the

model is semi-Markov In nature because the transient analysis Of such

processes requires the evaluation of convolution quantities (integrals

or sums, respectively, for continuous or discrete time models) that

require massive amounts of computer memory and computation time.

3.The time horizons of interest are often very long in absolute terms,

though they still remain short relative to the time required for the

process to reach the steady state. Typically, a fault-tolerant system

will be used for operating Intervals that are a significant fraction of

the expected lifetime of its most failure-prone components. This

fraction seldom approaches unity because the redundancy level of these

components required to satisfy any reasonable specification on the

system reliability would drive the price of the system high enough to

justify the use of fewer, more reliable (and therefore more expensive)

components. On the other hand, extremely short operating times would

yield a probability of failure for any component that Is so low that

the extra Investment In fault-tolerance would not be justified by the

small increase in reliability. In light of 2 above then, the transient

behavior of a Markovian process must be examined over time horizons on

the order of the mean time to failure of the most failure-prone

component. Given the current emphasis on the manufacture of highly

reliable components, these time horizons can be extremely long.

I4. A time scale separation tends to exist between the component failure

process and the RH decision process. Failures tend to occur only

rarely and therefore tend to have large time durations between them.
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RM decisions, however, must occur quickly following a failure and tend

to occur very rapidly relative to failure events. This means that the

Markovian model of the behavior of the system status exhibits "fast"

modes and "slow" modes. This time scale separation provides the

motivation for the behavioral decomposition methods that are currently

being investigated by us and by other researchers in the field.

The goal of this research project is to develop a method that generates

approximate solutions to the generalized Markov process models that

characterize fault-tolerant system behavior without the use of excessive

computer memory or computation time. The behavioral decomposition alluded

to in Comment 4 above provides the basis for the approach. However, the

nature of fault-tolerant system models is such that extensions to existing

theory are necessary in order to exploit the decomposition approach. These

extensions and the numerical verification of their validity are the primary

results obtained from the work reported here.

1.2 Previous and Related Work

A number of researchers have addressed various aspects of the problem

of approximating the behavior of finite state Markov processes with weak

interactions between groups of states. The most recent work to appear on

this subject is that of Coderch Ell. This paper is derived from [2), which

contains an extensive description of previous work in the area. Much of the

work preceding [l applied only to limited classes of finite state Markov

processes and, in particular, were not applicable to semi-Markov processes

or to processes with purely transient states. In [], a method is described

by which continuous time, finite state, weakly coupled Markov processes

without transient states can be decomposed into transition operators that
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are valid for increasingly longer time scales. The result is a sequence of

operators that describe the transition behavior of the process at each time

soale such that the multiple time scale solution for the process behavior

converges to the actual process behavior asymptotically as the small

parameter representing the weak interactions converges to zero.

Unfortunately, the method does not apply to semi-Markov processes and it has

not been extended to apply to discrete time processes. Furthermore, the

method requires the solution of very complex linear algebra problems, such

as the description of nullspaces of operators, in the generation of the

operators that are valid at each time scale.

Currently, an effort is underway to extend the results of [1) to finite

state Markov processes evolving in both discrete and continuous time that

include special types of transient states (called "nonsplitting transient

states" in [4]). Some preliminary results of this effort are described in

[31. Further results are expected soon [4]. It should be noted that the

results in [3) and [1, like those In the previously cited references,

currently are applicable only to Markov processes. It is expected that [4]

will include some results on semi-Markov processes, but the limitations of

these results remain to be seen.

It should also be noted that the methods of [3] and [4), like those in

[1,2), generate a description of the behavior of the process in sequentially

longer time scales. It is frequently the case in fault-tolerant system

analysis that the behavior of interest occurs only in the first time scale.

This observation, combined with the difficulty that the methods of [3) and

C4 have in dealing with transient states and the current lack of results

for semi-Markov processes, suggests that an alternative method for dealing

with these processes is of interest.

5



Much of the work reported here is an extension of the work reported by

Korolyuk, et. al. [5,6). These results apply to finite state semi-Markov

processes with weak interactions, where the continuous time case is treated

In [5] and the discrete time case in [6]. The interactions between the

states is weak in the sense that the transition behavior depends upon a

small parameter c such that when c is zero the process decomposes into

noninteracting classes of states. The form of the transition behavior

assumed by [5,6) is that the transition probabilities within a class include

terms that are independent of e while the Interclass transition

probabilities are all at least first order In e. Also, it is assumed that

the holding time densities associated with all transitions become compressed

near the origin as c becomes small. Finally, it is assumed that the

decomposed classes that result from setting e-0 are all ergodic. When all

of these conditions are satisfied, it is shown in (5,6J that the behavior of

the original process over time horizons on the order of t/c can be

approximated by a reduced order Markov process representing the interclass

behavior in this time scale expanded by the stationary distribution of

probability within a class that results from the ergodicity of each class

when c is zero. The parameters of the reduced order Markov process are

expressed in terms of the transition probabilities of the original process

and the mean holding times associated with the holding time distributions.

The results in [5,6] are very powerful for approximating the behavior

of semi-Markov processes that satisfy all of the conditions in the first

order time scale. Unfortunately, most models of fault-tolerant system

behavior do not satisfy these conditions. This observation provides the

motivation for much of the work to be reported here.
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In particular, faultatolerant system models tend to have two

characteristics that violate the conditions imposed on the process by [5,6].

One is that the holding time densities do not compress as the small

parameter representing the weak interclass interactions is made smaller.

The reason for this is that the holding time densities for fault-tolerant

system models are determined by the probability mass functions of the time

needed for various sequential fault diagnosis tests to reach decisions. The

behavior of the fault diagnosis tests typically occurs in the "fast" time

scale, but it is not altered by changes in the failure rate of the

components, which is usually the source of the small interaction parameters

in these models. This situation is illustrated clearly by the model derived

in Chapter 3 of [7), which is the 9-state model referred to in [8]. None of

the holding time densities for this model display the explicit dependence on

the scaled time t/E that [5,6) assume (see Appendix C of [7)).

The other manner in which fault-tolerant system models often violate

the conditions assumed in [5,6) is with respect to the ergodicity of the

classes when c-0. Many fault-tolerant systems include RM logic that shuts

off a component permanently once it has been diagnosed as failed. If this

diagnosis is the result of a false alarm, the corresponding system status

state involves no failures and hence tends to be in the same class upon

decomposition of the model as other no-failure states such as the state

where no failures and no RM decisions have yet taken place. But the false

alarm state in this case is a trapping state for this class when the failure

probability (and hence e) is set to zero. Therefore, this class is

nonergodic. This tends to be true of many of the classes of states

associated with models of fault-tolerant system behavior when irreversible

RM logic is used by the system.
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The work that was reported In [8) last year discussed some of the

alternatives that were being investigated for circumventing the problems

associated with applying the results of [5,6) to fault tolerant system

models. In [8), it was noted that the ergodicity of the classes is actually

a stronger condition than what is sufficient for the proofs presented in

[5,6] to hold. In particular, it Is sufficient that the inverse operator

[I - Pk + Vk- I exist where Pk and wk are operators that are associated with

the kth class defined in [8,p. 7). This observation leads to the

interesting but not very useful conclusion that the results of [5,61 can be

extended to models for which the weaker condition is satisfied by each

class.

It was also reported in [8] that work had begun on circumventing the

problem that the holding time densities for fault tolerant system models are

not dependent on the small parameter representing the weak interactions.

The approach described in [8] was to introduce a second small parameter that

represented time scaling into the model. The holding time densities then

took the approprla'e form for application of the results of [5,6] provided

the time scaling parameter was proportional to the original small

interaction parameter. It was speculated that the time-scaled results would

exhibit the asymptotic convergence to the correct behavior Implied by the

results of [5,6). Work had just begun on investigating this speculative

hypothesis for continuous time models.

1.3 Research Goals for the Year

The goals for the year of effort reported here were as follows:
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1. Continue the extension of the results of [5,6) to models evolving in

continuous time where the holding time densities do not depend directly

upon the small interaction parameter e but rather on a small time

scaling parameter related to E.

2. Conduct further investigations on nonergodic models by examining a

number of continuous time examples. Attempt to identify a theoretical

result regarding such models.

3. Develop results similar to [5,6] as extended by the two previous goals

for discrete time semi-Markov models of fault tolerant systems.

~4. Develop a means for generating the exact solution to models of simple

fault-tolerant systems for the purpose of comparison with the results

generated by the approximate technique.

The next section of this report will discuss the progress made on these

goals during the past year.

II. PROGRESS SUMMARY

In this section, the work of the past year is summarized and is related

to the goals that were discussed above. Numerous references are made to

[7], which is the S.M. thesis of Siu-Kwong Chu that was completed under the

support of this grant. This thesis is included as Appendix A of this report

for easy reference.

2.1 Time-scaling of Continuous Time Models

In [8], the idea was put forward that when the time axis over which a

semi-Markov model of fault-tolerant system behavior evolves is scaled by a

small parameter 5, the holding time densities in the model take the form

that is required for the application of the asymptotic theorems of £5,6]
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provided the parameter 6 is proportional to c. This idea is explained

rigorously in section 2.2.1 of [7]. After introducing this time scaling, it

is possible to rederive the results that are of interest for asymptotic

approximations to the behavior of these semi-Markov models.

Let E be the state space of a finite state semi-Markov process that

evolves in continuous time t. Suppose that the process is observed with

respect to the scaled time t/6. Suppose further that the transition

operator of the process is such that its (J,i) element representing

transitions from state i to state j has the form:

Pi(t') - P C F* t'/6) i,j e E

where t' represents scaled time and where the eventual transition

probabilities pc take the form:

(k) _c (k) i,J c E
PJi -€ qi

pit

£(k)i£E,
c q W I e E , J c Ek

Here it is assumed that the state space E decomposes into weakly interacting

(k)
classes (El, E2 , ... , E }. It is also assumed that the p for each E sumn jiK

to unity, hence when c-O the classes E become noninteracting and each

describes a valid semi-Markov process.

Now let x(i) be the sojourn time (in scaled time) of the process inrk

class Ek when it begins from state IcE k and transits to class E Let

o (1) (k)
rk(s) denote the characteristic function Of Trk . Then, if the pl for

each k represent the transition probabilities of an ergodic Markov chain,
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then the Cs) are independent of the superscript I and they take the

form:

leEk icE r(Cks) = (k)

i eE k I (k) (k)
A (A s a P + c q

Akl/
SPrk A k/ + s

where the v Ck) are the stationary probabilities of the ergodic semi-Markov
I

process associated with class E k and the aji are the mean holding times

associated with the F t) in the original time scale. The quantities in

'i

the second expression above are defined in [7, sec. 2.2.2]. Note that this

expression takes the form of the characteristic function of a Markov process

transition operator with eventual transition probability prk and transition

rate time constant Ak /a. Thus, the interclass transitions are Markovian in

scaled time.

The proof of this result can be found in [7, sec. 2.2.2].

The derivation of the result expressed above makes possible the

analysis of continuous time semi-Markov models of fault tolerant system

behavior provided the model has ergodic classes (note the underlined

condition above). Many fault tolerant system models violate this condition,

as was discussed in the Introduction. However, many fault-tolerant systems

that do not employ irreversible fault isolation logic do produce models with

ergodic classes. Therefore, this result is a positive step toward analysis

of models for these types of systems.
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The manner in which the result above can be used for such analyses is

as follows. Suppose a model for a fault tolerant system has been

constructed and one is interested in calculating the state probabilities for

the model at scme relatively large value of time t in order to assess the

reliability (or some other status-related property) of the system. Suppose

further that the model satisfies the conditions stated in the result above.

Then the approximate class occupancy probabilities at the desired time can

be calculated by scaling time appropriately, constructing the Markov process

that approximately governs interclass behavior from the result above (this

is called the enlarged process in [7]) and solving this relatively easy

Markov process problem. It is assumed here that the initial condition is

known for the state probabilities and therefore also for the class occupancy

probabilities. The results should be rescaled back to the original time

scale. Then, finally, the approximate state probabilities can be evaluated

by weighting the stationary probability distribution associated with each

class when c-0 by the appropriate approximate class occupancy probability.

The derivation of the result above and the construction of the

approximate evaluation method discussed in the preceding paragraph complete

the work necessary to satisfy Goal 1.

To illustrate the approximate evaluation procedure, a model for a

generic fault tolerant system was constructed and solved using both "brute

force" numerical convolution techniques and the approximate technique

described above. The system consisted of three components where at least

one unfailed component must be available for the system to remain operating.

It was assumed that the failure diagnosis algorithm used sequential tests in

combination with logic that is described in detail in sec. 3.1 of [7]. The

tests were assumed to have second order Erlang distributions for their times

12



to decision. The logic Included the possibility of recovering components

that have previously been diagnosed as failed, thereby leading to a model

that has ergodic classes. The complete model is described in secs. 3.3

through 3.5 and Appendix C of [7). The model has 9 states which decompose

into three classes when the small failure rate is set to zero.

The exact state probability histories are obtained numerically and are

described in chapter 4 of [7]. It should be noted that a very large amount

of computational effort was required to generate these exact solutions. The

approximate model is also constructed and solved in chapter 4 of [7]. The

approximate solutions were, for the most part, obtained with just the aid of

a hand calculator. Only when complete time histories were desired was it

necessary to resort to the use of a computer. Upon comparison of the

results, one finds that the largest error in the evaluation of any of the

state probabilities by the approximate method for this example is less than

1% of the value obtained by numerical means (which itself is subject to a

small amount of error) for times greater than the longest mean holding time

of the sequential tests, where the assumed mean time between failures is 3

orders of magnitude longer than this.

These results are very encouraging, but they are not sufficient to

conclude that the approximate technique always works so well. In order to

further investigate the properties of the approximate technique with the

time scaling included, a number of four-state semi-Markov models were

examined. These models were chosen to reflect various characteristics that

larger fault tolerant system models tend to possess. By keeping the

dimension at 4i, however, it is possible to generate the true behavior of the

model with relative ease whereas models of larger dimension are extremely

difficult to solve (recall the comments above regarding the nine-state

13



model). Even four-state models are difficult enough to solve, however, that

symbolic manipulation was necessary to generate the exact solutions. This

is true despite the fact that none of the holding time densities in the

models were assumed to be any more difficult than second order Erlang.

The five cases of four-state models that were examined are discussed in

detail in chapter 5 of [7]. The approximate method produced very accurate

results in every case that was examined. The comparison between the results

was almost always exact to 4 decimal places except in the very early time

periods before the startup transient of the process has decayed.

One of the cases of four-state models that was examined was a model

that did not have ergodic classes (Case IV). The fact that the approximate

technique still produced extremely accurate results suggested that we

investigate further the ergodicity condition and its impact on the results

from which the approximate method is derived. The work accomplished in this

area is described in the next section.

2.2 Relaxation of Ergodicity Condition

Many fault tolerant systems yield generalized Markovian models of their

behavior that decompose into classes that satisfy all of the conditions for

applying the approximate technique except the condition that they be ergodic

when e-O. This is typically the result of irreversible logic structures in

the RM algorithm for the system such that diagnostic decisions alone can

permanently eliminate a component from use.

However, in the analysis of four-state models discussed above, it was

noted that excellent results were obtained when the approximate method was

applied to a case where the model did not possess ergodic classes. A single

example is not sufficient to prove any statement regarding the applicability
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of the approximate method to models with nonergodic classes. However, these

results did motivate us to examine the underlying reason that the method

worked for this particular example.

The result of this investigation is the following theorem regarding

models with nonergodic classes:

Theorem 1: Let a semi-Markov process depend upon e such that it can be

decomposed in the manner described in section 2.1. Suppose in addition

that the imbedded Markov process transition operator P k associated with

the kth class when c-0 satisfies:

ni P [v v ..- v]lim 1 mk a

where v is a constant vector, for every k. Then the interclass

transition behavior approaches the same enlarged Markov process behavior

that was described in section 2.1 as c approaches zero.

The proof of this theorem appears in chapter 6 of [7].

Theorem 1 considerably widens the class of semi-Markov models to which

the approximate technique can be applied because the condition stated in the

theorem is weaker than the ergodicity of the classes that was required by

the previous results. Many fault tolerant system models possess the

properties stated in the conditions of Theorem 1.

The analysis leading to Theorem 1 led us to consider the specific

situations in which the conditions of the theorem are satisfied. This

investigation led to the following refinement of the theorem:
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Therem 2: Let a semi-Markov process depend on c such that it can be

decomposed into classes as prescribed in section 2.1. The transition

operator Pk of the imbedded Markov process associated with the kth class

when c-O will satisfy the condition of Theorem 1 If:

1. The kt h class is ergodic, or

2. P k has one and only one eigenvalue of unity.

The proof of this theorem also appears in chapter 6 of [7].

It should be emphasized that Theorem 1 is still only a sufficient

condition for the approximate technique to yield accurate results as the

small parameter c becomes small. In other words, there may exist semi-

Markov models that do not satisfy these conditions whose behavior can still

be approximated well by the approximate method. Theorem 2 provides a more

restrictive but more easily checked sufficient condition.

Some examples of models that do and do not satisfy the sufficient

conditions of Theorem 1 are presented in chapter 6 of [7]. One example in

particular that does not satisfy the conditions includes a class that

contains multiple trapping states when c-O. We have begun an effort to

extend the results to this case as well by searching for conditions under

which the approximate method succeeds in approximating the interclass

behavior.

The derivation of the two theorems discussed above represents our

progress thusfar on Goal 2.

2.3 Discrete Time Models

All of the results described so far in this report have applied to

continuous time models of fault tolerant system behavior. However, because

16
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the R algorithm for the system is usually implemented on a digital computer

with a significant time delay between successive applications of the

diagnosis tests, fault tolerant system models are often purely discrete time

in nature. Efforts have been made during the past year to derive results

for discrete time processes that mimic those discussed above for continuous

time processes. This section reports on these efforts.

Much of the work that has been accomplished this year for discrete time

models has related to the adaptation of Korolyuk's limit theorem for semi-

Markov processes [5] to semi-Markov chains. In addition, a limit theorem

with time scaling for semi-Markov chains was also developed. The theorem

statements are summarized below.

An important result that will be referred to in both theorems discussed

is presented in Lemma 3.

LEMA 3: Let P(k) [PJ(k)] represent an imbedded Markov chain operator of

a semi Markov chain E Consider the system of equations below:

(1) (z) _ 1 ()Q) W C k) 0
Jo(k)(z) -E k rk ji a

The solution of the system of equations is independent of the

superscript, that is:

4 W - (# )W V icE
rk rk k

if and only if the imbedded Markov chain operator represented by the

,(k)

transition probability matrix (p(k li,JcEk } has at most a single unit

magnitude eigenvalue.

Thus, any ergodic imbedded Markov chain operator (for which all

eigenvalues have less than unit magnitude) will satisfy Lemma 1. In

17



addition, any monodesmic imbedded Markov chain operator (one that has only

one trapping or absorbing state, and hence a single unit magnitude

eigenvalue) will also satisfy Lemma 1. This assertion is similar to Theorem

2 for continuous time models.

The following theorem describes how a semi-Markov chain which is

dependent on a small parameter c can be approximately described by a Markov

chain. This theorem is derived based on the results for semi-Markov

processes in [5).

SemiPMarkov chains are characterized by a finite set of states and by a

distribution of the holding time or sojourn time in each state that is

arbitrary for each state to which a transition can occur. A semi-Markov

chain specializes to a Markov chain when the holding times for each state

are identically exponentially distributed. The semi-Markov chains here are

assumed to depend on a small parameter E such that the state space can be

decomposed into disjoint classes of states where the probabilities of

departure from each class tend to zero along with c. In addition, the total

sojourn in each class is assumed to have a non-degenerate distribution in

the limit as c + 0.

THEOREM 4: A Limit Theorem for Semi-Markov Chains

Let the set E of states of the semi-Markov chain be expressible as a

sum of disjoint classes

Ne
E- I Ek  k c {M k - 1,2,...N e  (2.1)

ko1

Let Y i) be the sojourn of the semi-Markov chain in class Ek when it
rkk

starts from state i and moves to class E . The following two

conditions are assumed to hold

18



1. The elements of the core matrix sequence (gei(m)li,JcE} specifying

the semi-Markov chain depend as follows on the small parameter e:

gCi (m) - p i h1 (7) (2.2)

and where h (0) - 0. The PC1 may be expanded in a Taylor series

jii

about C - 0. Taking only linear terms in c:

e (k) q (k) + + 0(c); ij e (2.3)

Pji PJ ji k

e c q (k) +*" + O(c); i e Ek ; J i Ek

The imbedded Markov chain obeys the usual Markov chain properties:

(k) (k)

PJi . 1; and pji e [0,1J; V IJ e Ek; V k c M (2.4)
JCEk

and

2. The imbedded Markov chain defined by the transition probability

matrices {p(k Ii'JEck V kcMl are ergodic with stationary
ji k

probabilities {v(k) ti cE  ¥ kcM}.

Then:

(i)
lim PrYrk < t Yk I - exp(-Akt/T)] (2.5)

C+0 - rkk

where:

X (k) q(kr)
ICE k i qYrk

~rk I (k) (k)
iCE k I
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X (k) q(k)
IcE k I

k (k) (k)I a1

icEk

Here:

(rk) (k)qil k  " c r qJi #
icer

(~k) j (k)

q~k) - I. q~JcEr

a (k) p(k)Y

I JcE rjI j

"Yl =mL m hji(m)

Although the above theorem is useful, it is not directly

applicable to most fault tolerant system models for two reasons: (1)

the imbedded Markov chains for such models are usually non-ergodic, and

(2) the holding time density functions are usually not dependent on m/c

but only on m. Hence, a necessary adjustment that must be made in the

above theorem is to determine what conditions must be satisfied by the

imbedded Markov chain (thus Lemma 3) and to incorporate time scaling

into Theorem 4.

THEOREM 5: A Limit Theorem With Time Scaling for Semi-Markov Chains

Let the set E of states of the semi-Markov process be expressible

as a sum of disjoint classes

N e
E - I Ek 1 C I k - 1,2,...Ne,

k-l
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Let Y(i) be the sojourn of the semi-Markov chain in class Ek when itrk

starts from state I and moves to class E r  Let the following two

conditions hold for the semi-Markov chain:

1. The elements of the core matrix sequence {gi (m)Ji,jcE} specifying

the semi-Markov chain depend as follows on the small parameter 6:

9 (M) - PE (M) (2.2)
gJi PiJI. 6

and where h (0) - 0. The pl may be expanded in a Taylor series

jij

about c - 0. Taking only linear terms in c:

PJC . P W _e q(k) + "'" + O(c); i,j c Ek (2.3)

= c (k) + + 0(e); i c E ; J i E"€ i  k..

The imbedded Markov chain obeys the usual Markov chain properties:

I P (k) . 1; and (k) c [0,1]; V i,j E Ek; V k E M (2.4)

phE k ipii Ek;Jok

and

2. The imbedded Markov chains defined by the transition probability

(k)
matrices {p ( i,JcE V kcMi have at most a single unit magnitude

eigenvalue (hence, ergodic or monodesmic) with stationary

probabilities [(k)lieE V kcM}.

Then:

lim Pr{Y < t} - Yrk [1 - exp (-Akt/T)] (2.5)
C+O

(rk) (k) (k)
where Yrk' Ak q qi and a were all defined in Theorem 4 and

a is defined below.
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The results of Theorem 5 are being applied to examples of fault

tolerant control systems for which semi-Markov chain reliability models have

been derived. Three simple reliability models have been developed to date.

The first is for a simple component monitoring system. A single non-

essential component has a sequential test monitoring faults for the

information of the pilot. This produces a 3-state model that can be

decomposed into two classes. The second model Is of a single-component dual

redundant (SCDR) system. This model has six states and three non-ergodic

classes. When a false alarm recovery test is incorporated into the second

system, a model with nine states and three ergodic classes results.

These three models will be analyzed by applying the results of Theorem

5. The probabilities of occupying each class will be computed and will be

compared to a numerical or analytical computation of the aame quantities.

This work and its continuation represents our progress so far on

Goal 3.

2.4I Generation of Exact Results

When approximate answers are derived to problems for which it is

difficult or impossible to generate the exact answer, a question arises

regarding the means by which these approximate answers can be validated.

Obviously, it is the intent of the problem-solver to avoid the difficult

procedure of generating an exact answer. Yet, without the exact answer, how

can one be certain that the approximate answer is accurate? We face that
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dilemma here in calculating our approximate answers to fault tolerant system

model behavior.

In section 2.1, we limited our consideration of model structures to

four-state models with Erlangian holding times so that we could generate the

exact answers relatively easily. In fact, as we discussed in section 2.1,

it was still necessary to use a symbolic manipulation program to derive the

true results because the numerical calculations were cumbersome.

Discrete time models of fault tolerant system behavior tend to be just

as cumbersome. In selecting the three models of fault tolerant system

behavior to analyze, we have been careful to choose simple ones. This

allows us to analyze their behavior analytically before applying the

approximate technique.

In this regard, our efforts have been directed toward using a symbolic

manipulation package (MACSYMA) to obtain, in closed form, the z-transform

solution to the discrete time models (that is, an expression for the state

occupancy probability vector). From the analytical solution, a truncated

Taylor series expression in c can be found that can be compared with the

results of applying Theorem 5. This will provide an expression for the

first truncated term of the Taylor series and thus will provide an error

bound on the approximation for these models.

In the proof of Theorem 5, all order c2 terms in the total probability

equation are ignored. The resulting expression contains a zero and first

order E term. The zero order term is shown to vanish in the limit as c

approaches zero. The remaining first order c term is left and c may be

cancelled, leaving the Theorem 5 result. However, a first order

perturbation of the Theorem 3 result can be obtained by expanding the total

probability equation to second order in c and ignoring order d terms.

23
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Again, the zero order term vanishes in the limit. With the remaining terms,

rk (z) is found, but the new expression contains terms proportional to c.

Including this perturbation term in e should improve the numerical results

that can be obtained for the class occupancy probabilities. This will be

discussed in future progress reports.

This constitutes the progress we have made so far on Goal 4.

III. PAPERS AND PRESENTATIONS

No papers were derived from this work during this year. However, a

paper is in progress based upon the work reported in sections 2.1 and 2.2

that will be submitted to an archival journal, probably Mathematics of

Operations Research. Also, one S.M. thesis was completed this year, namely

that of Siu-Kwong Chu. This thesis [7] is included here as Appendix A.

A presentation on this work and other fault tolerant system evaluation

work was given by Prof. Walker at NASA-Langley Research Center in March. In

addition, Prof. Walker has been invited to speak as part of an aerospace

systems workshop at the American Control Conference in Seattle in June.

IV. PROJECTIONS FOR THIRD YEAR OF WORK

During the third year of work, the goals of the program are those that

were stated in the renewal proposal. These are:

1. Investigate the possible further weakening of the conditions sufficient

for the validity of the approximate results for continuous time models

beyond the Theorems of section 2.2. Our primary emphasis here will be

continuous time models for which at least one of the classes of the

nonperturbed process contains more than one trapping state.
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2. Continue the derivation of analogous results for purely discrete

parameter models.

3. Complete the symbolic derivation of analytical solutions for the three

models described in section 2.4. Use the results to find either an

alternative form for the discrete time approximate results or an error

bound in terms of c on the approximate results. Generalize the error

bound, if possible.

4. Use the sampled Monte Carlo techniques of [9] to generate valid "truth"

results with which the approximate results can be compared.

V. FINANCIAL AND MANPOWER STATUS

The manpower complement remained unchanged from the proposal.

Professor Bruce K. Walker continues as the Project Director, devoting

approximately 20% of his academic year time and 60% of his summer time to

the project. The two graduate students, Siu-Kwong Chu and Norman M.

Wereley, continue as full-time graduate Research Assistants supported by the

project. Margaret McCabe provides clerical assistance. No changes are

anticipated from the manpower arrangement proposed in the renewal proposal.

The financial aspects of the project have also followed the proposal

closely with one exception. The cost underrun from the first year was added

to the second year budget, partly as capital equipment funds. Air Force

approval was given for this change by Capt. Dwight McGhee in a letter dated

11 December 1985. The capital equipment money was used to purchase an IBM

Personal Computer Model AT, which is now the primary means of computation

and wordprocessing for all three participants in the grant.
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the class to class transition structure of typical fault-tolerant system models, and
the results show that accurate approximation is achieved for these examples after a
short transient period. In addition, the ergodicity sufficient condition imposed on
the semi-Markov process to be approximated is relaxed. As a result fault-tolerant
system models with certain types of non-ergodic classes can also be solved by the
approximate technique.
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Notation

E state space of semi-Markov process

Ek k-th partition or class of state space of a semi-Markov process

Fji(.)  cumulative probability density function for time to transition from
state i to state j

hji(.) holding time probability density function for transitions from state
i to state j

H(.) holding time probability density function matrix

p If eventual transition probability from state i to state j of perturbed
semi-Markov process

p(k) eventual transition probability from state i to state j in class k of
non-perturbed semi-Markov process

Prk eventual transition probability from aggregated "state" k to

aggregated "state" r of the approximate Markov process

P eventual transition probability matrix

P(.) transition kernel matrix

PEi( . )  total probability in class i of perturbed semi-Markov process

Pji(-) kernel element for transition from state i to state j of perturbed
semi-Markov process

waiting time greater than (.)

N Q M Q Z X I A L N I ILI I IPh L Q Q = ' W "'
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6 time scaling factor

csmall parameter representing the constant failure rate

Ork(.) transition kernel for class k to class r transitions of the

approximate Markov process

0C-) interval transition probability matrix

NO parameter for false alarm decision time probability density function

X I parameter for isolation decision time probability density function

)Xw0/Xw1 parameters for failed/unfailed indication decision time probability
density function of the self-test given the component is working

XFO/AFI parameters for failed/unfailed indication decision time probability
density function of the self-test given the component is failed

Ak constant transition rate out of aggregated "state" k of the
appproximate Markov process

Vi(.) probability in state i of semi-Markov process

7rk)(.) total probability in class k of the original semi-Markov process

rk(.eprobability in state k of the approximate Markov process (orenlarged process) i.e., approximate total probability for class k of
the original semi-Markov process

(Ik) stationary probability in state i which belongs to class k of the non-
perturbed semi-Markov process

Ir(k)  stationary probability in state i of the imbedded non-perturbedMi Markov process for class k of the semi-Markov process
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mean holding time of transition from state i to state j
mean holding time in state i without regard to the destination

Tmean holding time of a semi-Markov process

_ i) the sojourn random variable of the semi-Markov process in Ek
Ak when it starts from state i, i E Ek and moves to E,
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Nomenclature

BITE Built-In Test Equipment

CDF Cumulative Distribution Function

FDI Fault Detection and Isolation

MTTF Mean Time To Failure

PDF Probability Density Function

PMF Probability Mass Function

RM Redundancy Management

SL System Loss

SPRT Sequential Probability Ratio Test

VSST Vector Shiryayev Sequential Test
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Chapter 1

Introduction

1.1 Background

A fault-tolerant control system is a system designed with redundant capacity

to perform its mission. That is, it can do its job using more than one configuration

of its components, e.g. sensors and actuators and information processing

capability. The on-line detection and isolation of failed components and the

reconfiguration of the system's architecture is performed by the system's

Redundancy Management (RM) scheme. The fault-tolerant approach enhances

system reliability and performance. There are many application areas where ultra-

high system reliability is necessary or desirable. One such area is the control of

nuclear power plants where the consequences of improper control system behavior

may be serious indeed. There are space missions for which the desired operational

lifetime of the spacecraft is many years. The air traffic control system and many

military systems are also subject to very high reliability requirements. There is

also a desire for increased reliability in computerized banking systems, chemical

process control systems, medical monitoring systems, transportation systems, and

many more. As a result, growing attention is being given to the design of

components for long life, to quality control during manufacture, and testing and

maintenance policies which enhance reliable system operation. Despite these efforts

to improve the reliability of individual components, the resulting system reliability

is still often inadequate for some reliability requirements. As a result, there is

increasing interest in fault-tolerant system designs which allow components to fail
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but still provide a means for the system to continue to function.

The growing use of fault-tolerant system designs has in turn spurred interest

in methods for assessing the reliability and performance of such systems. The

traditional methods of reliability evaluation are based on combinatorial analysis of

combinations of component failures [7) . They generally consider only the

probabilistic occurrences of component failures and seldom account for the

probabilistic nature of the outcomes of any on-line monitoring test that might be

used by the fault-tolerant system in an effort to detect and identify such failures

and to reconfigure the system to remove from use any failed components. In

addition, classical reliability analysis produces as its sole result the probability that

the system will maintain its integrity over the duration of its operating time. No

information is provided on the performance of the system during the transient

period of the mission.

Since classical reliability analysis fails to quantify fault-tolerant system time

behavior, other alternatives must be considered. Naturally, in this age of the high-

power main-frame computer, Monte Carlo simulation is one option. This method

consists of building, with a computer program, a probabilistic model of the system

under investigation. If the system of interest is properly modeled for various

random effects that bear on it and sufficient simulation runs are obtained, then

essentially any aspect of the system performance can be statistically evaluated from

the simulations. However, as is pointed out in [101, the drawback of Monte Carlo

technique stems from the fact that a sufficient number of simulations must be

available. For a system with a component failure rate as low as 101 per sec., the

number of simulations needed to generate statistically significant results about

failures must exceed one billion. Furthermore, the fault-tolerant system to be

simulated is frequently rather complex, often involving multiple instruments and a
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hierarchical architecture for the Failure Detection and Isolation (FDI) logic.

Consequently, obtaining reliable results by Monte Carlo technique is often

prohibitively costly in terms of the required computational effort.

The use of Markov chain theory [9, 61 has shown promise as a means for

evaluating the performance of those fault-tolerant systems which employ FDI tests

that are of the single sample variety, that is, the information that is used for FDI is

gathered and discarded at each time sample. However, single sample FDI tests

generally have a relatively high likelihood of decision errors, particularly in noisy

signal environments. In such situations, fault-tolerant systems are always equipped

with digital computers that execute FDI tests based on several samples of the

monitoring data at each time sample. Such tests include moving window tests and

tests of a completely sequential nature. Such tests are not memoryless. Therefore,

the systems in which they are employed are not conducive to the compact

treatment by the application of Markov chain analysis that is possible for systems

employing only single sample tests.

The Markov modeling technique mentioned in the previous paragraph must

be generalized in order to capture the non -memoryless nature of the sequential RM

strategy employed in many fault-tolerant systems. More specifically, the model

must account for the time delays associated with processing a sequence of

observations before a FDI decision is made. Some effort has been made to analyze

such systems and it appears that the generalized Afarkovian (or 'semi-Markov)

modeling methods [10, 81 are applicable to some systems of this type. In addition

to the necessary assumptions, a problem with this reliability evaluation method is

that the large number of states in the model causes the computation of results to

involve excessive amounts of computer storage and computation time. (Usually,

each state in a generalized finite-state semi-Markovian model of fault-tolerant

amo&hu ' ".A'Qf t, Y 1 u "l ":o
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system behavior represents a particular combination of specific component failure

modes and of RM decisions.) The reason for this for both continuous time and

discrete time models is as follows: For quantitative continuous time system

performance analysis, the state probability distribution w(t) at every time t must be

evaluated. With known (O), standard time-invariant semi-Markov theory yields,

It)M = t)0) (1.1)

where 0(t), interval transition probability matrix, is the solution of the following

matrix convolution integral equation (see appendix A.2 for the details of the

derivation, and the notations),

*(t) - > W(t) + fdrO(t-r)[PH(r), 0(0) = 1 (1.2)

The above equation is in a form that can be solved analytically by the Laplace

transform technique. It is not difficult to obtain 0(t) in closed form for systems

that comprise only two or three states. However, for complex systems with a large

number of states (for example, the model for a dual-redundant engine controller has

30 states [2] flight control system models will have many more), it will become

intractable to obtain a closed form solution even with the hel of symbolic

manipulation software, e.g. MACSYMA. The reason is as follows: Solving Eq. (1.2)

for #(t) involves the problem of inverting an N x N matrix symbolically, where N is

the number of states of the 3ystem model. Unlike the case in numerical analysis

where the number of operations required for a matrix inversion is on the order of

N3 , in symbolic inversion the number of operations for a N x N matrix whose

elements are as simple as a single term function of s is on the order of N!. It should

also be pointed out that a symbolic operation is also more complicated than its
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counterpart in numerical operations, which is usually a floating point

multiplication. In addition, the computer memory required for storing intermediate

expressions is extremely large. So the problems associated with memory storage

and computation time prohibit the use of a symbolic manipulation program in

solving for 0(t) analytically for a continuous time model. On the other hand, for

discrete-time semi-Markov models, irk, the state probability distribution at time

step k with known z(0), can be expressed as,

ir(k) = 4D(k)x(0) (1.3)

where 0(k) is recursively generated by (see appendix A.1 for the details of

derivation and notations),

k

0(k) M > Wk) + 0 (k-m)[PH(m)I, 0(O) = 1 (1.4)

m-0
It can be seen that a convolution sum is involved. This implies thaQ for a system

with N states, approximately 2kN 2 values must be stored in order to compute 0(k)

and hence 7r(k). For N = 20 and k = 100,000 as might be the case for a simple

flight control system operating with RM updates at a rate of 50Hz for 35 minutes,

the storage required is approximately 80x10 6 values or 640 megabytes of storage for

accurate single precision state probability distribution calculations. The number of

floating point multiplications required for calculating 45(100,000) is approximately

7x10 12 . This poses the same problem as the continuous time model. These

computational and memory burden problems encountered in the reliability and

performance analysis of complex fault-tolerant systems employing non-memoryless

FDI tests provides the motivation for the work described in this thesis.

The goal of this work is to reduce the problems encountered in complex
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system reliability analysis by expanding upon the asymptotic approximation

technique for semi-Markov processes described in (4, 5] and applying them to fault-

tolerant system models. The idea, basically, is as follows: Consider a time-invariant

rmite-state continuous parameter semi-Markov process whose state probability

distribution is given by i(t) for t > 0 with r(0) known. Then -t) can be evaluated

according to Eq. (1.1) and (1.2). Suppose the process depends on a small parameter

c such that the state space of the process can be partitioned into disjoint classes

E, .... Em when I = 0. That is, no classes can communicate with any of the other

classes when e is zero. Suppose further that the Probability Density Functions

(PDFs) that govern the transitions between states also depend on E in the "right"

form (as will be explained in Chapter 2) and let _(t) be the probability distribution

associated with this aggregated grouping of states. Then it can be shown j11J that

±'(t) evolves according to the Kolmororov backward equations governing a time-

invariant Markov process, that irk (t) - lir EEE 7ri(t/e) and that the

parameters defining the Markov process can be derived from that of the original

semi-Markov process. In less rigorous terms, this means that the long-term

behavior of the original model, that is the distribution r(k)(t/e) after it is

aggregated, is asymptotically well-approximated by the distribution er k)(t) which

evolves as a Markov process with known transition behavior as the small parameter

e nears zero. If a stationary probability distribution rk) exists for each disjoint

class of states Ek, then the approximation for the probability in state i is [11],

Tir(t) ; ir k ) 7r (ft) (1.5)

As can be seen, the approximate technique involves two elements, namely the

stationary probability distribution and the approximate Markov process (or enlarged

process). These results are also applicable to discrete-time time-invariant finite
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state semi-Markoy models [121.

The application of these results to the reduction of the complexity of the

reliability evaluations based upon generalized Markovian models is reasonably

straight-forward if the system model has all the characteristics mentioned above.

Most fault-tolerant systems produce generalized Markovian models that are

approximately in the form necessary to apply these results because the rarity of the

component failure events relative to the rate at which RM decisions are typically

made yields the small parameter i which must be present in the characterization.

A problem typically arises with the form of the state to state transition holding

time density functions, this problem, however, will be dealt with in this thesis.

1.2 Orgaalaatlon of Thesis

The mathematical tool that is used to model fault-tolerant systems is the

theory of semi-Markov processes. They are very similar to Markov processes but

with one more degree of freedom that make them well suited for capturing the

random delay behavior of RM decisions for nonmemoryless tests. Asymptotic

enlarging of semi-Markov processes [4, 5] is the primary tool that is used to

accomplish the goal of this thesis. However, general fault-tolerant systems yield

semi-Markov models whose state to state transitions do not behave the same as

that described in the references there. Therefore, the theory will be extended here

to apply to typical fault-tolerant system models and the parameters for the

resulting approximate Markov processes will be derived in Chapter 2.

In Chapter 3, the structure of an example fault-tolerant system is described

and the assumptions used in the model construction for it are stated. After

defining all the system states, a 9-state transition kernel matrix is constructed

M'66 0IM0=



which completely characterizes the system behavior. It is shown that the system

model can be decomposed into three classes of states when the component failure

rate is equal to zero. The transition kernel is then decomposed into the standard

form that will be used in the subsequent chapter to calculate the parimeters of the

approximate Markov process.

Chapter 4 deals with the analysis of accuracy of the two elements of the

approximation technique. That is, the evolution of the aggregated state probability

distribution calculated by the semi-Markov approach is compared with state

probability distribution of the enlarged process and the normalized probability

distribution is compared with the stationary probability distribution in each class.

The enlarged process approximation method is further tested in Chapter 5

with a general 4-state semi-Markov model. Five different cases are presented which

capture five different possible class to class transition types that might typically

occur in a fault-tolerant system model.

The sufficient condition imposed on the semi-Markov processes for the

approximate technique to be applied is relaxed and two theorems associated with

this relaxation are established in Chapter 6.

Some limitations of the enlarged process approximation approach are

examined in Chapter 7.

Chapter 8 concludes the thesis with a discussion of the work and its

contributions and suggestions for the directions that further research might take.

U % '% *].- V V
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Chapter 2

Theory of Enlarged Semi-Markov Processes

As it is pointed out in the Introduction, the mathematical tools used in this

thesis are classical semi-Markov process theory and the theory of enlarged semi-

Markov processes. Semi-Markov process theory is used to model the probabilistic

behavior of a fault-tolerant system. The resulting mathematical model of a

complicated fault-tolerant system with a large number of components and several

different levels of RM decisions is a high dimensional model with a large transition

kernel matrix. Usually, it is impractical to obtain the desired state probability

distribution history over the mission length due to limited computer memory

storage and the high computational cost. The enlarged semi-Markov process

theory, to be described in Section 2.1, is used to approximate the large dimension

semi-Markov process by a low dimension Markov process, which characterizes the

evolution of probability among groups of states. That is, each state of the enlarged

process represents a group of states of the original semi-Markov process.

Frequently in fault-tolerant system models, each enlarged process state represents a

group of states from the original model with the same number of working

components but having different RM configurations. However, enlarged semi-

Markov process theory as it appears in the current literature does not apply to

fault-tolerant system models, as will be explained in Section 2.2. Therefore, the

theory will be extended in Section 2.2.2 in order to apply it to fault-tolerant system

models.

O R ur, A W _' ,% ", ,.,- .. - ...-. - - ...--..-...,:. .-.
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2.1 Korolyuk's Limit Theorem for Semi-Markov Procesma

References [3,41 describe the conditions under which a perturbed semi-Markov

process can be approximated over long time frames by a Markov chain. There are

essentially two of these conditions. First, the kernel of the semi-Markov process

must depend on a small positive parameter i in such a way that the entire space of

states of the semi-Markov process E can be split into disjoint classes of states

£ = I'krn, Ek, where the probabilities of departure from each class and of the

sojourn time in a given state both tend to zero with e . The total sojourn time in

each class is assumed to have a nondegenerate distribution in the limit as ( -. 0

(when --O, the process will be referred to the non-perturbed semi-Markov process

while the original process will be referred to as the perturbed semi-Markov process).

Mathematically this condition can be expressed by the following equations,

P.. (t) = p(F- 4t/), i,jE E; (2.1)

(k) (k) iJ E E k,

P 4  i- 1O3i (2.2)f q. i E E, j 0Ek,

whereZF P(k) =1 iEEk, 1 <k <m

jE Et
where Pji is the eventual transition probability of the original process from state i

to state j, Fji(t/c) is the Cumulative Distribution Function (CDF) of the holding

time for transitions from state i to state j.

Second, the Markov chains defined by the transition probability matrices

Pij (ii E Ek, I < k < m) , must be ergodic with stationary probability
IJI

distributions (iEEk, 1 < k < m) When these conditions are satisfied by a

perturbed semi-Markov process, then its behavior can be approximated by a
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Markov chain. More specifically, if is the sojourn of the semi-Markov process in

class Ek when it begins from state i and moves to class E. , then [4] shows that the

cumulative distribution function of the random variable can be expressed by an

exponential function when e becomes vanishingly small:

im P{ '0 < t} Pk ( I e-Akt) (2.3)

As can be seen from the above equation, the dependence on i disappears on the

right hand side of the equation. That is, each state in class Ek has the same

exponential holding time density function for transitions to class Er for all r. So all

the states in class Ek can be merged together and the aggregated model has the

characteristic of a Markov process.

The second part of condition 1, defined by Eq. (2.2), is often satisfied by a

fault-tolerant system model. If the system components all have small constant

failure rates proportional to e, then each class of states for the enlarged process can

be formed by grouping together all the states that have the same groups of working

and failed components but with different statuses of the RNI logic. The class-to-

class transitions are then possible only through the small possibility of failre of a

component. When =O, i.e. when no failures can take place, the only transitions

that are possible are those within each class due to the outcomeE of the RM

decisions. If there is Built-In Test Equipment (BITE) included in the RM system, a

component that was previously isolated as failed by the RM can be brought back

on line. For this kind of system, the imbedded Markov chain for each class is

generally ergodic. Then the second part of condition I is satisfied. The remaining

condition that has to be satisfied is defined by Eq. (2.1) or the first part of

condition 1. Usually, this condition is not satisfied by a fault-tolerant system

model. The reason is as follows: if E is small, i.e. the Mean Time To Failure
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(MTTF) of the components is large, say hundreds of hours, then the holding time

of the transition, particularly those within a class, is determined only by the noise

in the signals and the threshold set by the FDI test designer. So, as the failure rate

tends to zero, the RM decision delay will not be affected by the failure rate. So,

the transition kernel of a fault-tolerant system semi-Markov process model will not

take on the form implied by Eq. (2.1). Because Eq. (2.1) is not satisfied, the

enlarged process, if it can even be formulated, may be an invalid approximation to

the aggregated semi-Markov process model.

2.2 Extension of Korolyuk's Work

As described in Section 2.1, the only condition in Korolyuk's theorem that is

not satisfied by fault-tolerant system is that the FDI decision delay, and therefore

the holding time probability density functions, does not depend on the small

parameter c. However, the state transition delay of a semi-Markov process would

be dependent on a small parameter mathematically if the temporal line on which

the delay was originally measured is scaled, say by a time scaling factor 6. In this

way, fault-tolerant system models can be modified to satisfy all the conditions

required for the enlarged process results to be applied. Section 2.2.1 shows how the

transition kernels of a semi-Markov process depend on the small parameter 6 when

the process is characterized on a new temporal line. Section 2.2.2 will derive the

parameters of the Markov process that approximates the behavior of the

aggregated, time scaled semi-Markov model.
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2.2.1 Changing the Time scale of a Perturbed Semi-Markoy Process

A fault-tolerant system model with a finite number of states evolving in

continuous time is a semi-Markov model which is completely characterized by its

transition kernel matrix. The standard form of the (i,j) element of the matrix is as

follows:

Pi ( t) = p .. hi( t)  (2.4)

where pji is the eventual transition probability and hji(t) is the conditional

transition time probability density function for transitions from state i to state j.

The eventual transition probability is the probability that the process that entered

state i on its last transition will enter state j on its next transition. Before making

this transition, the process "holds" for a random time in state i, where the time is

governed by the conditional transition time probability density function. In fault-

tolerant systems with small component failure rates of order c, hji(t) is related to

the PDFs of the time delay of the FDI tests. Obviously, hji(t) does not in general

depend on c. However it will depend on another small parameter 6, the time

scaling factor, if the original temporal line on which the FDI decision delay was

measured is scaled. If a stochastic process is observed in another time scale that is

1/6 times that of the original, then the holding time PDF hji(t) certainly will be

affected but the pii will be the same because the eventual transition probability pji

only characterizes the transition probability from state i to state j for the next

transition whenever it occurs. Therefore, it is not related to the time scale in

which the process is observed. However, the "new" holding time PDF is not

obtained by just replacing the argument of the original PDF by t/6 because if the

original hji(t) is replaced by hji(t/6) for the change of time scale, then integration of

hji(t/6 ) from time t=O to time t=oo does not produce 1. This means that hji(t/6)
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is not a proper holding time PDF. For a change of time scale of a stochastic

process, the CDF Fji(t) of the corresponding PDF hji(t) must be found, and the

argument of the CDF, t, must be replaced by t/6. Then the holding time PDF of

the process observed in the new time scale is h'. .(t) = 1,F.tlb/6). So, the statistics
J8 dt is

of the process in the new time scale depend on the small parameter 6, the time

scaling factor. If 6 equals e, i.e. if the time scaling factor is equal to the failure rate

of the components, then the condition is satisfied. But 6 is not necessarily equal to

c for the derivation of the enlarged process and the enlarged process will be derived

in the next section.

2.2.2 Derivation of kk(s) of a Time-Scaled Perturbed Process

As pointed out in the last section, a time-scaled version of the original process

is not required in the evaluation of the approximate solution. So what follows is

the proof that the aggregated semi-Markov process in scaled time evolves as a

Markov process and the derivation of the parameters of the Markov process. A

similar approach to that of reference [41 will be used in this section for the proof

and the derivation of the parameters.

It is assumed that the system semi-Markov model depends on the small

failure rate parameter e in such a way that the entire space of states of the model

E can be split into disjoint classes of states E=(El....Ek} such that the

probabilities of departure from each class tend to zero as c tends to zero. In

addition, if the process is observed on a temporal line 1/6 times that of the original

then the sojourn in a given state tends to zero as b tends to zero. To illustrate this

point, consider a process that is observed in terms of hours while it originally was

described in terms of seconds. Then the PDF describing the delay for transitions

from state i to state j will be "crushed" near the origin, so the sojourn in state i
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will be small in units of hours. Because the whole process is observed in a new time

scale, all of the Fii( ) will depend on the small parameter 6.

A time-scaled semi-Markov process with the above characteristics can be

characterized by the following equations,

1E P q ( ) Eij( 2 . )

q i i E Ek, i Ek,

where p' is the eventual transition probabilities of the imbedded Markov chain,
j1

and the non-perturbeded eventual transition probabilites plk) satisfy the following
JR

equation

S,(k) =I iEEk, I < k < m (2.6)

j E Ek
and the element of the transition probability matrix can be expressed as,

P'(t) = pFi(t/6) iJE E (2.7)

where Fji(.) is the CDF of the transition delay for the process in the original time

scale. Eq.(2.7) is a generalization of the form of the transition probability matrix

elements that define the semi-Markov process.

If {rk denotes the sojourn of the semi-Markov process in class Ek when it

starts from state i and moves to Er and 6 ji denotes the sojourn of the semi-Markov

process in state i, with the CDF Fji(t), while 6.. are the indicators of transition from
j]

state i to the state j, so the E{6-.I=pji, then the random quantities 'r can bep j rk

obtained by using the expression for the total probability
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+ E P{e.=l, 6 .___t} (2.8)
jE Er

Hence

jE Ek jE Er

Using the Laplace transform,

4)( = EI e rk } (2.10)

-- (s).= fn (2.11)

then eq.(2.9) becomes,

OY)(Srk F, 09 WkSPI(a) +_ S_(.2
rkr Pji i

JE Ek JE Er
Combining the Laplace transform of Eq. (2.7) and Eq. (2.5):

P i (8) = ( p(.k) - c,( ) 60( O E (213)J1- £q )( j -saij+ ), jEEk (21

',i (8) = bq(t +(o jOE (2.14)

substituting these expressions in eq.(2.12), it becomes,

, iso' '',- ' .v ' ,' "".:,':_:;t': -;' ,?.i:,. ' ' ' '', e: ' ";J1".1' AL" :". .
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00) (,S)(- +

rk r P E b~aj Pt i rk

jE Ek k E Er

+ f 1 q(9 + 0(f 6) (2.15)
jE E

Passing to the limit as e and 6 - 0 ,the functions 0() are found to satisfy the

system of equations,

E () P( ) (..6o)rk Js " rk

I E Ek
It follows from this and the assumption that the imbedded Markov chain defined

by the transition probabilities p !)( i, j E Ek ) is ergodic, that ( see [1] ) the solution

of system Eq. (2.16) is independent of the superscript, i.e. for all i E Ek,

l (s)-OA(s). Multiplying Eq. (2.15) by the stationary probabilities ,r!k) and

summing over all i E Ek, then cancelling c, the following is obtained,

a ea 9 + cq) 8 ir) 1 (9 (2.17)
Si Pj~jaJ3rk 3 3;8

i E Ek JE Ek iE Ek jE e

or,

(k)

k(EEk ()E, (2.18)
k )yi p( ) +  (Ic)

i E Ek jE Ek

or,

Ak/ +.8

where
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a- 6  (2.20)

l r(k) (rk)

Akr i E Ek (2.21)
l(k) .(k)

I 8i

i E EA;

E (k) q(.)

Ak= j Ek (2.22)

i 6Ek

qlrlc) -(k

I__ (2.23)

q~h) 1:(k)
q~) q.1 (2.24)

i 6 Ek

P) a k (2.25)

aj- tdji(t) (2.2 6)

This completes the proof that any semi-Markov model with the properties

stated above can be approximated by a Markov process whose parameters were

also derived. The Markov process evolves in a longer time scale, i.e. 1/6 times that

of the original process. For instance, if 6=1/3600 and if the original semi-Markov

model evolves in seconds then the approximate enlarged Markov process will evolve

in hours.

One of the sufficient conditions in the derivation in this Chapter for the

enlarged process is that all the classes must be ergodic. This condition is not
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generally satisfied by all fault-tolerant system models. One non-ergodic model will

be examined in Chapter 5 and this issue will also be discussed in Chapter 6.

There are two parameters involved in the derivation, namely ( and 6, but the

parameter that actually affects the behavior of the original semi-Markov process is

e while 6 is just a time scaling factor that relates the time scale of the approximate

Markov process and that of the original semi-Markov process. However, there is no

known way to show how small e must be for the Markov process to be a good

description of the behavior of the aggregated semi-Markov model. So, assessment

of the effect of the small parameters will have to rely on empirical results. For this

purpose, a fault-tolerant system semi-Markov model will be constructed in the next

chapter.
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Chapter 3

Construction of Fault- Tolerant
System Model

In the preceding chapter it was proved that under certain conditions such as

vanishingly small i and ergodic classes, an aggregated, perturbed, time-scaled semi-

Markov process evolves asymptotically as a Markov process and the parameters of

the approximate Markov process were also derived. However, bounds on the size of

c are not known for the Markov process to be a good approximation of the original

semi-Markov process. As mentioned before, e is usually the system component

failure rate. Then the question arises: For the approximation to be reasonably

good, would e have to be extremely small ? In another words, do the MTTFs of the

flight control system components of subsystems have to be unrealistically big, say 5

years, which is equivalent to -=4.47x10"9 , for the aggregated system model to

behave approximately as a Markov process ? This provides the motivation for the

construction of a generalized Markovian fault-tolerant system model in this chapter

for such investigation and for the demonstration of the approximation technique.

Since the base-line numerical results of the model will be calculated from semi-

Markov theory the system model will have to be small enough to avoid excessive

memory storage and computational burden, but it will be rich enough to include

sequential FDI tests and self-tests that are found in many fault-tolerant systems.

Since the theory developed in Chapter 2 is in the continuous time domain, the

model will also be formulated in continuous time. Any conclusions obtained in

continuous time theory should also be valid in the discrete time case.
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This chapter begins with a section that describes the architecture and FDI

structure of an example fault-tolerant system. The next section states the

assumptions that are made in the model constructuon. The state definitions will be

presented in Section 3.3. The formation of the transition kernel of the semi-

Markov process is illustrated in the next section. Decomposition of the transition

kernel into the required form is included in the following section.

3.1 Structure of Three-Component Fault-Tolerant System

Suppose that the fault-tolerant system, or subsystem, comprises three

independent instruments which are measuring (or actuating or otherwise operating

on) a single scalar quantity. Such situations arise in such applications as flight

control, ( e.g. body rate sensors along a given axis and actuators for segmented

control surfaces ), highly reliable data processors, ( e.g. redundant synchronizing

clocks ). In the measuring instruments case, three independent observations of a

scalar quantity are available. With a set of two linearly independent parity

equations, those three independent observations are used to generate a vector parity

residual sequence. The RM in the system relies on the Vector Shiryayev Sequential

Test (VSST) which makes use of the vector parity residual sequence to detect and

identify the failure mode (see Section 3.1.3 of [10]). In contrast to other sequential

tests (e.g. the Sequential Probability Ratio Test or SPRT), there is no need with

the VSST for a separate isolation stage once a failure mode is detected. When an

instrument is identified as failed, it is removed from the system by the

reconfiguration scheme.

Once an instrument is removed from the system, a SPRT self-monitoring test

is initiated on the isolated instrument. The intent here is to model the

-........--M-,q - - ---. *
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implementation of BITE monitoring that is often included in real systems. The

self-test produces either a failed or an unfailed indication on an isolated instrument

and when there are two consecutive indications that the instrument is unfailed,

then the instrument is brought back on line and the VSST FDI test is reinitiated. It

is assumed that no effort is made to detect further failures when two unflagged

instruments remain available.

3.2 Asumptions In Model Construction

The complete structure of the fault-tolerant system was described in the last

section. Before we proceed to construct the associated generalized Markovian

model several assumptions will be made. Some of these assumptions make this

example, and most other fault-tolerant systems easier to analyze by semi-Markov

technique. These assumptions are as follows:

(a) The time to failure in any particular instrument is exponentially

distributed and independent of the status of other instruments and the RM

decisions.

(b) The probability of more than one event occurring during any dt is

negligible. These events include failures of components and decisions by

the RM system or by the self-tests.

Assumptions (a) and (b) are widely used in the analysis of fault-tolerant

system performance, so no further justification for them will be given here.

Following [10 , consider the situation where a failure occurs at some time

other than a state transition time, that is it does not occur at a renewal time

(where the VSST is reinitialized). In this case, VSST will have established values of

the test statistics which are distributed according to distributions conditioned on
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the hypothesis that no failure is present. Since the VSST is initialized with zero

test statistics, this implies that the test has a "head start" towards detection at the

time of a failure which is likely to yield a smaller delay to detection relative to the

delay associated with newly initialized test statistics. However, if the test has been

designed to achieve a low false alarm probability, the effect of assuming the

unaffected test statistics' is at its initial condition should be minor relative to the

effect of making the same assumption for the test that is affected by the failure.

Thus:

(c) For VSST and SPRT, the occurrence of a failure is assumed to coincide

with a renewal time for the test.

The last assumption below is an unrealistic one. However, it can still capture

the non-memoryless nature of the self-test:

(d) Failed and unfailed indications by the self-test are independent.

Although this assumption is not the cage for a SPRT, under this assumption

and assumption (b), the time to failed and unfailed decisions will have the same

density function but with different eventual transition probabilities. If the failed

indication rate is higher than the unfailed indication rate given the isolated

component is failed, then there will be a higher eventual probability for failed

indications that will appear in the transition kernel. These assumptions will be

used in the transition kernel construction in Section 3.4.

3.3 State Definitions

We are now in a position to define the states for the semi-Markov model of

the example fault-tolerant system described in Section 3.1. The state

characterizations must include all the information necessary to formulate the

.~ ~ r %CtjA,



transition kernels for the exit transitions out of each state. In this system, it is

necessary to know the following in order to characterize each state:

1. The number of instruments that are available for use.

2. Of these, how many of them have failed.

3. If an instrument has been isolated by FDI as failed, the status of the

isolated component and the number of unfailed indications by the self-test

for this instrument.

Consider what happens if all of the possible system configurations are

enumerated as the system states. For example, suppose that the condition where

the first instrument is failed and the other two are working, in the case of 3

available instruments, is enumerated as state 1, the second instrument failed and

the other two working, in the case of 3 available instruments, is enumerated state

2, etc. Then the resulting model will have twenty-six states. However, since all the

instruments for this example are the same, there will be no difference between

states I and 2 in terms of the number of failed and working instruments or in terms

of how many failed instruments are still in use. Only the number of failed and

working instruments and the number of unfailed indications from the self-test are

necessary in the state definitions. So, by merging the states, the dimension of the

model can be greatly reduced, in this case to just nine.

The unacceptably degraded condition, which is a trapping state, is denoted by

SL ( 8yatem loas) and is assumed to comprise all system configurations that involve

two or more failed components.

Let the state characterizations be denoted by the following notation where r
brackets indicate sets of possibilities from which one and only one element will

appear in each state characterization:

to

fl -N~g nqaa A A AS ~ 'r. - - - -
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3/{}o 3 instruments available for use

2/ to) /1 H o)2 instruments available for use

In the case where 3 instruments are available for use, the leading 3 represents the

three available instruments. In the second entry, 0 represents no failure is present,

F indicates there is I failed component. The case of 2 failures is not included

because it represents a system loss. When two instruments are available for use,

the notation with the leading 2 follows the same convention as before and

represents the two available instruments. The 0 or F in the second entry indicates

the presence of no failure or 1 failure among the three components, respectively. C

or W in the third entry indicates whether the isolated component has been

correctly or wrongly isolated, respectively. The last entry represents the number of

consecutive unfailed indications from the self-test for this instrument. As an

example, consider the state denoted by 2/F/W/1. This means that two

instruments are available for use and one of the three is failed. Furthermore, the

isolated component has been wrongly isolated (i.e. it is not the failed one). Finally,

there has been one unfailed indication from the self-test for the isolated component.

An exhaustive list of all the states and the state numbering scheme follows:
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state s.c.n. 1  state description

1 3/0 3 available, none failed, VSST in operation.

2 2/0/W/0 2 available, none of the three failed, no unfailed indication
from self-test.

3 2/0/W/1 2 available, none of the three failed, I unfailed indication
from self-test.

4 3/F 3 available, 1 failed, VSST operation (i.e. detection delayed.

5 2/F/C/0 2 available, 1 of the three failed and correctly isolated, no
unfailed indication from self-test.

6 2/F/C/i 2 available, 1 of the thee failed and correctly isolated, 1
unfailed indication from self-test.

7 2/F/W/0 2 available, 1 of-the three failed but incorrectly isolated, no
unfailed indication from self-test.

8 2/F/W/I 2 available, I of the three failed but incorrectly isolated, 1
unfailed indication from self-test.

9 SL system loss.

As can be seen above, it requires 9 states to describe the operational states of this

fault-tolerant system. From now on, this system model will be referred to as the

9-state model.

The transitions out of each of the nine states correspond to the occurrence of

one of the random events such as component failures and RM decisions. The state

transition event trees for all 9 states are given in Figure 3-1. For clarity of how the

system can transit from one state to another state, a state transition diagram is

lstate characteristic notation

J: '' ' ' ' 7: ) - ? ? . . .; . .. .',,'.'."--'.;. :..;.: . .. "..; .:. ".'.>.':,'..'-.'-,' , , ,'--"'-K
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Transition due to occurrence of

0_3/0 2/0/W/0 false alarm by VSST.

3/F failure of one of the 3 instruments.

G 2/0/W/0 failed indication from self-test.

2/0/W/( 2/0/W/1 unfailed indication.

O 2/F/C/0 failure of isolated instrument.

- 2/F/W/0 failure of one of the two available
instruments.

O 3/0 2nd. consecutive unfailed indication from
self-test, instrument brought back on line.

$ 2/0/W/1 - 2/0/W/0 failed indication from self-test.

0 2/F/C/i failure of isolated instrument.

O 2/F/W/I failure of one of the two available
instruments.

I 2/F/C/0 correct isolation by VSST.

3/F 2/F/W/0 wrong isolation by VSST.

SL 2nd. failure of instrument.

Figure 3-1: State transition event trees

~..
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j- ( 2/F/C/0 failed indication from self-test.

F- ® 2/F/C/1 unfailed indication after previous failed
L 2/F/C/0 indication from self-test.

L SL 2nd. failure of instrument.

G 3/F 2nd. consecutive unfailed indication from
self-test, instrument brought on line.

® 2/F/C/i - 2/F/C/O failed indication from self-test.

cjQ SL 2nd. failure of instrument.

2/F/W/O failed indication from self-test.

S2/F/W/ 2/F/W/I unfailed indication from self-test.

SL 2nd. failure of instrument.

® 3/F 2nd. consecutive unfailed indication from
self-test, instrument brought on line.

® 2/F/W/I - 2/F/W/O failed indication from self-test'.

SL 2nd. failure of instrument.

SL SL trapping state.

Figure 3-1, continued

rov 'j.' -...

Z 00 e
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shown in Figure 3-2.

3.4 Transition Kernel Matrix for the 9-State Model
I

In order to formulate the transition kernels for the 9-state model in closed

form, the following conditional decision time density functions associated with the

two sequential tests employed by the system and the time to failure density

function of each instrument are assumed to be known:

J = density function of time to isolation by VSST under condition that no
failure is present, with parameter X0.

v= density function of time to isolation by VSST under condition that one
failure is present, with parameter Xr

fS = density function of time to failed indication by self-test SPRT under
condition that no failure is present in the isolated instrument, with
parameter Xw0 *

fs = density function of time to unfailed indication by self-test SPRT under
condition that no failure is present in the isolated instrument, with
parameter XW1 .

Is = density function of time to failed indication by self-test SPRT under
condition that a failure is present in the isolated instrument, with
parameter XFo

I = density function of time to unfailed indication by self-test SPRT under
cbndition that a failure is present in the isolated instrument, with
parameter XFI"

fF = density function of time to failure of each instrument, with parameter

C.

These decision time density functions for the tests will be assumed to be 2nd order

Erlang functions (see Appendix B for the properties of the density function) and
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they are relatively realistic because the sequential tests are unlikely to reach their

decision either a very short time or a very long time after they are initiated.

Rather, they are more likely to reach a decision around a region of time that is

some distance after the test is initiated. To illustrate this point, a Monte Carlo

simulation 2 for the correct decision Probability Mass Function (PMF) of a VSST

was obtained and is plotted in Figure 3-3. It shows that most of the decisions are

reached at around 18 seconds after the test is initiated.

After the conditional decision time density functions for the tests are known,

the transition kernel can be constructed by considering what the kernel elements

actually represent:

P.- (r) dr p ..i h.. (-r)dr

- r { i -. j in [ r, r + dr) I enter i at 0 }

By expanding the meaning of i -- j and the definition of conditional probability,

Pji(r)dr can be rewritten in two different forms as follows:

P.i (r) dr = Pr { i -- j in (r, r + dr) and no i --- k at any t < r
for k=,2, ...... N I enter i at 0 } (3.1a)

- Pr { i -. j in [ r, r+d r) I no i - k at any t < r
for k= 1,2 ...... ,N and enter i at 0 }

Pr { no i - k at any t < r
for k=1 ..... ,N I enter i at 0} (3.1b)

Following [101, the form in Eq. (3-1a) will be called the direct form because it is

simply a restatement of the definition of Pji(t). Eq. (3-ib) will be called the

conditional decomposition of Pji(t). For clarity, Eq. (3.1b) can be modified as,

2 Monte Carlo simulation source code is supplied by the author of reference [10
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Pfi(r)dr= Pr i-.j in [r, r+dr) and no i-j at any t < r

no i --* k at any t < r
for k- 1,2,...,j-1,j+1,...,N and enter i at 0 }
Pr { no i - k at any t < r
for k=1,2,...,j-1,j+l,...,N I enter i at 0 } (3.1c)

The conditional decomposition of Pi(t) for each j and i provides a complete

definition of the behavior of the semi-Markov process. Construction of the

transition kernel by use of the conditional decomposition is particularly useful for

fault-tolerant system models because the eventual transition probability for each

state transition is generally not known.

The construction of two representative transition kernel elements of the 9-

state model is described below. First, the transition kernel element P 21 (t) for

transition from state 1 to state 2 is derived. State 1, which represents all the

instruments are working, with state characterization notation 3/0, can only transit

to state 2 with state characterization notation 2/0/0 and to state 4 with state

characterization notation 3/F. Hence, the transition from 1 to 2 represents the

occurrence of a false alarm by the VSST in the absence of a failure of any one of

the instruments. Using the definition of Eq. (3-1b), the transition kernel element is

derived as follows:

P2 1 (r) dr = Pr ( I 2 in [ r, r + dr ) no I -. 2 at any t < r
no 1 -- 4 at any t < r and enter I at 0 }

Pr { no --. 4 at any t < rI enter I atO } (3.2)

In terms of the conditional density functions of the test decision times defined at

eq. (3.2a):

P21(r) dr - f°(r)dr[ lf fF(p)dp ]3 (3.3)
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If

X--2 e-x (2nd order Erlang)
V 0

f= -e (exponential)

then

P 21(r) dr = X- r C\ dr [ e- P

or

P21(t) = ) 0 t e-( 1 0 + 3,) (3.4)

Another transition kernel element to be considered explicitly here is the one

representing transitions from state 2 to state 5. State 2 and State 5 have state

characterization notation 2/0/W/0 and 2/F/C/O, respectively. Other states that

stte 2 can transit to are states 2, 3 and 7 corresponding to state notation

2/0/W/0, 2/0/W/I and 2/F/W/0, respectively. Hence the transition from state 2

to state 5 represents the occurrence of a failure in the isolated instrument in the

absence of any failures among the two available instruments and of any decision

reached by the self-test. Then the transition kernel element can be derived as

follows:

P52(r)-P- {2-5 in [r,r+dr)andno2-*5 at any t < r

no 2 2,3,7 at any t < r and enter 2 at 0 }
Pr { no 2 --. 2,3,7 at any t < r I enter 2 at 0} (3.5)

with assumptions (a) and (d), Eq. (3-3a) can be rewritten in terms of the conditional

density functions of the test decision times:
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P52(r)d? =JF(Tr)d7 [1fru~p1[ j/'()du 1 [1]2

(3.6)

By substituting expressions for the density fucntions:

P62(r)dr= te- T dr( \)r+ 1 ) e-Xtr ( \Mr + 1) e-Xlr fe- 2 r

= e ( XMr + 1 ) ( X r + 1 )e-(X4) + -W1 + 3E) T dr

or

P52(t) = W( X t+ 1) ( Xwt + 1) e-(X" +XWl + 3)t (3.7)

Two of the twenty-six nonzero transition kernel elements were derived above.

The remaining elements are included in Appendix C. The fault-tolerant system

model is completely characterized by this transition kernel matrix, and state

probability histories can be derived from it by using Eq. (1.2). Nny aspect of the

system performance statistics can be derived from it. Thc complete transition

kernel matrix is given in Eq. (3.8).

If e is set equal to zero in Eq. (3.8), that is, if no failures can occur among the

instruments, then the transition kernel will be reduced to the form shown in Figure

3-4. This matrix can be partitioned into a block diagonal matrix consisting of 3

blocks. This implies that no transitions occur between the states associated with

different blocks. Then the states within each of these three blocks form a closed

class. Therefore, when the original process is reduced to a non-perturbed semi-

Markov process, the resulting process consists of 3 classes. The first class

comprises states 1, 2 and 3, each of which has all three instruments working but

with different RM levels. Class two contains all the system states with exactly one

~!
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0 0 X 0 0 0 0 0 0

X X X 0 0 0 0 0 0

0 X 0 0 0 0 0 0 0

o 0 0 0 0 X 0 X 0

P(t)= 0 0 0 X X X 0 0 0

0 0 0 0 X 0 0 0 0

o o 0 X 0 0 X X 0

0 0 0 0 0 0 X 0 0

0 0 0 0 0 0 0 0 X

X: non-zero transition kernel elements

Figure 3-4: Structure of non-perturbed 9-state model transition kernel matrix

failed instrument, i.e. states 4, 5, 6, 7 and 8. State 9, the system loss state, is the

sole element of the third class.

3.5 Decomposition of Transition Kernels into the Standard Form

At this point, it is useful the express the transition kernel in the form which

comprises an eventual transition probability and a holding time density function as

in Eq. (2.1) The parameters of the transition kernel elements in such form will be

used for calculating the parameters of the approximate Markov process governing

the class-to-class transition. The two transition kernels in Eq. (3.4) and (3.7) will

be decomposed into the required form.

Eq. (3.4) can be rewritten as
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P21(t) X 02 X0 + )2 e-( Xo + 3(39
(Xo + &€ )2

Obviously, the second term of the RHS of the above equation is the conditional

holding time PDF of transitions from states I to 2. The first term will be expanded

in a power series in £ and high order terms of £ will be neglected, that is:

X 02 -- e + 0(,E}
('\o + &, )2 Xo

I -f_ (3.10)Xo

Substituting in eq.(3-5), it becomes

P 21(t) { 1 6$ } ( XO + 3f )2 t e-( Xo + 3E) t (3.11)X 0

The transition kernel element for transitions from state 2 to state 5 in

Eq.(3.7) can be rewritten as:

P52(t) \M- M I4X wt2 + ( '\W0 + )XM ) t + I ] e-(XWO +  XM l + 3e ) t

2_1 X" X M I + X +3 )3t2e- ( X +X)W+3e)t
(XH4.+xH+3 3 2

+ ( x + 'M ) ( + X + 3 )3 t e-( IM + XIV + 3c ) t

(XW + NW,++ + 3c I2
+ I ] ( X , +  X , +  3c )3 e-( X M +  X W1 +  & ) t

( XH4 + Xn + 3

(3.12)

It can be seen that P5,(t) comprises 3 terms, each of which is an "eventual

transition probability" times a "holding time density." Thus, the form comprises

more than one term, but it will be demonstrated in Section 4.3 that those terms

can be combined together to yield the standard form for the evaluation of the

parameters of the approximate Markov process. A complete list of all the

~V%%~!
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transition kernel elements in the standard form is included in Appendix C.

3.6 Closure

In this chapter, the structure of an example fault-tolerant system has been

described. After stating the assumptions and defining all the estates, a generalized

Markovian transition kernel matrix was constructed and it completely, characterizes

the state probability evolution. It was shown that the non-perturbed system model

can be decomposed into three closed classes. Generally, any fault-tolerant system

model can be decomposed into such classes if each class contains the same number

of working instruments and failed instruments.
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Chapter 4

Evaluation and Comparison of 9-state
Model Exact and Approximate

State Probability Histories

Approximate Markov process theory was developed in Chapter 2 and a fault-

tolerant system model was constructed in Chapter 3. The 9-state model exact and

approximate solutions will be evaluated and compared in this chapter. In the first

section, the state probability histories will be calculated by a semi-Markov

approach. From these results, the normalized state probability distribution that

exists within each class and the total probabilities for each of the three classes will

be evaluated. In the next section, the elements of the approximate technique will

be deduced. That is, the stationary probability distributions of the non-perturbed

process in each class and the parameters of the Markov process that approximates

the behavior between the classes will be calculated. The "state" probability

histories of the approximate aggregated Markov process will then be evaluated

analytically. Then, the approximate state probability histories will be constructed

by combining these results with the stationary probability distributions within each

class. These exact and approximate results will be compared in Section 4.3.
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4.1 9-state Model Numerical Results from Semi-Markov Approach

Because it is relatively easier to calculate the state probability histories

numerically up to a certain number of time steps than analytically, the continuous

time system representation must first be discretized into a discrete representation.

The interval transition probability matrix will be calculated by using the matrix

convolution sum in Eq. (1.4) and then the state probability vector at each time

point is calculated by using Eq. (1.3). The initial state probability vector in Eq.

(1.3) is assumed to be,

()=[1 0 0 0 0 0 0 0 0 0 (4.1)

because it is almost always the case that at the start of a mission all of the

instruments are working and all of the tests are initialized.

A FORTRAN source program was written to calculate these quantities. The

failure rate c, of each of the instruments is assumed to be 2.5x10 "6 see-1 which is

equivalent to a MTTF of 111.1 hours. The two sequential tests employed by the

system are assumed to have the decision time density function parameters listed

below:

1\= 0.001 XWD = 0.05 FD - 0.1

X, =0.05 XV" = 0.1 XF1 = 0.05

\- ,t- that the smallest of these values (0.001) corresponds to an approxii.ate mean

• e htw, en events of 0.278 hours, which is 3 orders of magnitude shorter than

I ll I hours MTTF of each component.

,r gram used double precision variables exclusively, and was run on a

M,,' tr svstem at the Massachusetts Institute of Technology. The

r V -- -



-53-

time step size for the discretized model was chosen as 4 seconds as a compromise

between the desired mission length and the accuracy of the solution. State

probability histories up to 800 time steps were calculated. This is equivalent to a

mission time of 3200 seconds or just under one hour. The state probabilities at

various time points between 180 seconds and 3200 seconds are shown in Figure 4-1.

The evolution of the probability of occupying state 8, which is the system

unreliability, is illustrated in Figure 4-2. From the state probability histories, the

class probability histories can be calculated by summing the state probabilities for

the states within each class. This aggregated probability histories, which will later

be compared with the "state" probability histories of the approximate aggregated

Markov process results, is shown in Figure 4-3 for each class. The evolution of

these probabilities for the 1st class and the 2nd class is plotted in Figures 4-4 and

4-5, respectively.

The state probability distribution of the original process will be approximated

by expanding the "state" probability distribution of the approximate Markov

process with the stationary probability distributions of the non-perturbed process

within each class, as in Eq. (1.5). Therefore, one way to measure how good the

approximation is, provided the approximate Markov process gives the exact class

probability distribution, is to observe how quickly and how accurately the exact

normalized probability distributions 3 in class 1 and 2 approach the stationary

probability distributions for these two classes. Therefore, the state probability

distributions calculated above were normalized and the results are shown in Figure

4-6.

3 The normalized probability distribution in 3 class is calculated by dividing the probability
distribution elements by the total probability of occupying that class.
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.. model parameer...

so 1 "0 ISM I I A"O lam.# Imefo I amf 1
0.250-Ol0. Oe-02 0.906-01 0.506-01 0. 100.00 0. 100.00 0.506-01

... a.9916. ,un parmeter...

MO. of ties 11tue* 0
time Sto/sec. 8004.00
final tie 3200.00 sec.

molmael sd Oran. dtat. in 6.Cf class

tfe Ste to
.t6 1 2 2 4 5 6 7

40 ."927611-00 .399-02 .237391-02 .391611-03 .623761-03 A134651-03 .2720M-04 .1411141-04 .432711-06
90 .28539E+00 .716511-02 .9534E1-02 .534671-03 .14407E-02 .346271-03 .40330M-04 .222711-04 .172766-05
120 .979741.00 .966181-02 .6969-02 .674376-03 .2259-02 .560749-02 .519951-04 .3008611-04 .281966.01
I60 .975366.00 .114626-01 .837521-02 .813766-03 .307721-02 .772756-03 .633751-04 .466679-04 .68467E-09
200 .271896.+W .127701-01 .93695-02 .292951-03 .36926-02 .964271-03 .746796-04 .5513111-04 .107476-04
240 .96906.000 . 134481-01 .10072E-01 .109196-02 .470661-02 .11953E-02 .8591-04 .6350321-04 .1549-04
260 .966741.00 .143421-01 .1067111-01 .123071-02 .559121-02 .14091-02 .970291-04 .719066-04 .210181-04
320 .9614736.00 .149066-01 .109339-01 .13691M-02 .032126-02 .11I-02 .10013E-03 .80094E-04 .274259-04
360 .91129714M .15133-01 .111656-01 .15074[-02 .713811E-02 .112991E-02 .11917-03 .862591-04 .346796-04
400 .961138[+00 .153631-01 .113621-01 .164541-02 .794546-02 .203112E-02 .130181-02 .964231-04 .427761-04
440 .959921+00 .195221-01 .114151-0l .17831E-02 .67SI06-02 .224411-02 .141151-03 .104576-03 .517161-04
400 .99541.00 .156319-01 ."95701-01 .192061-02 .955512-02 .249261-02 .152019-03 .11261-02 .614961-04
520 .957241.00 .1117049-01 .116261-01 .205751-02 .103511-01 .26607E-02 .163006-02 .12077E-02 .721151-04
56 .95991+W0 .157511-01 ."16621-01 .219466-02 .111996-01 .286041-02 .173099-03 .128046-03 .6315726E-04
600 .954751+00 .157791-01 .1164151-01 .233151-02 A119586-01 .307S71-02 .164751-03 .136696-03 .958646-04
640 .S9555+00 .157946-01 .116979-01 .24679E-02 .127561-01 .328261-02 .195591-03 .1449-03 .106991-03
690 .952371.00 A158001-01 .11702E-01 .260411-02 .135921-01 .3469tf-02 206411-03 .1152931-03 .12295[-03
720 .99120E6.00 .1117989-01 .117011-01 .214001-02 .143471-01 .369521-02 V27201-03 .160931-03 .137741-03
760 .95004[+00 tS57921-01 .116976-01 2871579-02 .15f406-01 .390036E-02 1227966-02 t$68911-03 .153361-02
t00 .9411096.00 .157621-01 .1169061-01 .3011116-02 .159321-01 A41061-02 .236731-03 .176966-02 .169611-02

Figure 4-1: Exact* state probability histories of the 9-state model.
(to within numerical round-off error)
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*', total prob. in each class ***

time step clasui class 2 cia.. 3

------------- -------------------------------------
- 40 0.998801194e+00 0.I19837337e-02 0.432711759e-06
- 80 0.997604987e+00 0.239328567e-02 0.172757496*-05
120 0.996411115e*00 0.3585005290-02 0.387964282e-05
160 0.995219321e+00 0.477379211e-02 0.688667893e-05

- 200 0.994029419@+00 O.595983465e-02 0.107466519e-04
240 0.992841273e+00 0.714326918e-02 0.154576463e-04
280 0.991654788e+00 0.832419441e-02 0.210178290e-04

* 320 0.9904698920+00 0.950268212e-02 0.274254270e-04
360 0.989286537e+00 0.106787848e-01 0.346787107e-04
400 0.9881046830+00 0.118525409e-O 0.427759824e-04
440 0.986924305e+00 0.1302397929-01 0.517155682e-04
480 0.985745383e+00 0.14193t211e-01 0.614958117e-04
520 0.9845679020+00 0. 153599829*-0 0.721150697*-04
560 0.983391851e+00 0.165245772e-01 0.8357i7095e-04
600 0.982217222e+00 0.176869142e-0l 0.958641062e-04
640 0.981044008e+00 0.188470018e-01 0.108990641e-03
680 0.9798722039+00 0.200048469e-01 0. 122949701e-03
720 0.978701805e+00 0.21160455ie-01 0.137739678e-03
760 0.977532809e+00 0.223138315e-01 0. 153358966e-03
800 0.976365213e+00 0.234649808e-O 0.169805965e-03

Figure 4-3: Exact class probabilities history of g-state model.
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**e model parameters -

ep lamO lami lamwO lamwl lamfO lamfi
0.25.-0S 0.10e-02 0.50e-O1 0.506-01 O.1Oe+0 0.10+00 0.500-01

**- program run parameters **

no. of time step X 800
time step/sec. a 4.00
final time a 3200.00 sec.

normalised Prob. dist. in each class

time state
step 1 2 3 4 5 6 7

40 0.993949 0.003674 0.002377 0.326783 0.520507 0.114195 0.022748 0.015768
80 0.987752 0.007182 0.005066 0.223402 0.601995 0.145520 0.016851 0.012232
120 0.983268 0.009717 0.007015 0.188107 0.630367 0.156411 0.014492 0.010622
160 0.980047 0.011538 0.008415 0.170464 0.644613 0.161873 0.013276 0.009776
200 0.977732 0.012847 0.009422 0.159895 0.653175 0.165150 0.012530 0.009250

240 0.976068 0.013787 0.010145 0.152859 0.658891 0.167336 0.012024 0.008890
280 0.974873 0.014463 0.010664 0.147840 0.662979 0.168897 0.011657 0.008626
320 0.974014 0.014948 0.011038 0.144080 0.666049 0.170068 0.011379 0.008424
360 0.973397 0.015297 0.011306 0.141158 0.668438 0.170979 0.011160 0.008265
400 0.972954 0.015548 0.011499 0.138822 0.670351 0,171709 0.010983 0.008136
440 0.972635 0.015728 0.011637 0.136912 0.671918 0.172305 0.010837 0.008029
480 0.972406 0.015857 0.011737 0.135320 0.673223 0.172802 0.010716 0.007939
520 0.972241 0.015950 0.011808 0.133974 0.674329 0.173223 0.010612 0.007863
560 0.972123 0.016017 0.011860 0.132820 0.675277 0.173583 0.010523 0.007797
600 0.972038 0.016065 0.011897 0.131821 0.676098 0.173896 0.010446 0.007740
640 0.971977 0.016099 0.011923 0.130946 0.676817 0.174169 0.010378 0.007689
680 0.971933 0.016124 0.011942 0.130174 0.677452 0.174411 0.010318 0.007645

720 0.971902 0.016142 0.011956 0.129488 0.678016 0.174625 0.010265 0.007605
760 0.971879 0.016155 0.011966 0.128875 0.678521 0.174817 0.010217 0.007570

800 0.971863 0.016164 0.011973 0.128322 0.678976 0.174990 0.010174 0.007538

Figure 4-6: Exact normalized probability distribution histories for
classes 1 and 2 of the 9-state model.

R~ s.,!*,, '; * ' '.' - - ~ V V.-~ 4,~ Wd\ W .
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4.2 Approximate State Probability Histories for the 9-State Model

4.2.1 Imbedded Markov Chains

It was shown in the last chapter that, when c=0, the 9-state model

decomposes into a non-perturbed model consisting of 3 closed semi-Markov chains.

The eventual transition probabilities of these non-perturbed semi-Markov processes

completely define the imbedded Markov chains. With the numerical values of the

parameters of the model listed in Section 4.1, the transition probability matrix of

the imbedded Markov chain is found and shown in Eq. (4.2).

0 0 0.7407 0 0 0 0 0 0

1 0.2593 0.2593 0 0 0 0 0 0

0 0.74074 0 0 0 0 0 0 0

0 0 0 0 0 0.2593 0 0.7407 0

P- 0 0 0 0.9 0.7407 0.7407 0 0 0 (4.2)

0 0 0 0 0.2593 0 0 0 0

0 0 0 0.1 0 0 0.2593 0.2503 0

0 0 0 0 0 0 0.7407 0 0

0 0 0 0 0 0 0 0 1

The transition probability matrix is raised to successively higher powers to

characterize the behavior of the imbedded process after many transitions. It was

found that when the power exceeds 40, a stationary interval transition probability

matrix establishes itself as in Eq. (4.3).

By a result in Markov process theory [3], it can be concluded that the
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0.2397 0.2397 0.2397 0 0 0 0 0 0

0.4388 0.4388 0.4388 0 0 0 0 0 0

0.3235 0.3235 0.3235 0 0 0 0 0 0

0 0 0 0.0550 0.0550 0.0550 0.0550 0.0550 0

PM= 0 0 0 0.7366 0.7366 0.7366 0.7366 0.7366 0

0 0 0 0.1910 0.1910 0.1910 0.1910 0.1910 0

0 0 0 0.0100 0.0100 0.0100 0.0100 0.0100 0

0 0 0 0.0074 0.0074 0.0074 0.0074 0.0074 0

0 0 0 0 0 0 0 0 1

(4.3)

decoupled imbedded Markov chains for each class are ergodic with the stationary

probability vectors in each class being,

10)= 0.2397 0.4386 0.3235 F (4.4)

=_ ) 0.0550 0.7366 0.1910 0.0100 0.0074 (4.5)
-M
Ar(3)(46_ = 111 (4.5)

As a result, the second condition stated in Chapter 2 is satisfied by the 9-state

model and the approximate Markov process will be valid.

4.2.2 Stationary Probability Distrbution of the Non-Perturbed Process

The stationary probability distribution of the non-perturbed process is needed

to expand the approximate Markov process results in order to approximate the

state probability distribution of the original process. By semi-Markov theory, this

stationary probability distribution for each non-perturbed class is given by
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S (4.7)

where ? is the mean waiting time of the process:

- Mi 7r (4.8)
i

and where 7rMi is the stationary probability for state i of the imbedded Markov

process that is characterized by the eventual transition probability matrix of the

semi-Markov process. ri is the mean holding time in state i and it is given by,

i = E Pji 'ji (4.9)
all j

where pji, with the same notation before, is the eventual transition probability from

state i to state j and ji is the mean holding time for transitions from state i to

state j which is defined by,

= f t hji(t) dt (4.10)

The calculation of the stationary probability distribution of the non-

perturbed semi-Markov chain in class 1 is demonstrated here and that of class 2 is

included in Appendix D.

For the non-perturbed process in class 1, state I can transit only to state 2,

state 2 only to 2 and 3, and state 3 only to 1 and 2. The mean holding time for

transitions from state i to state j is derived as follows:

Since p22(t) is not in the simplest form, T22 will be derived here. From the

transition kernel matrix,

P22() -= P221h221() + P0, h212(t)01-

1 21 _ %v
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where

hI.21)= + XM) 3 1 2 e-(Axi )t
P221 h2

h2() = (X + X,')3  (m+w~

P22  1

h22) h(t) + e-{()} (4.11)1)

P221 -o

where

P22 - P221 + P222

Note that any kernel element given by a sum of terms can be treated similarly. So

by definition, the mean holding time ?22 is given by

[001(t )  222t

= t { "_. h ( + No 2 h. } (t) dt
J 22 P22 2 e -22

2 P22  P22

1 3 + (4.12)

P22 (X14 0 
+ XW) P22 (XV, +  WM)

By a similar approach,

2

? 321 3 +P322 2

P32 (XV4W + 'InW) P32 ("IM + 'lRq)
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where

1 (X14.o + )M

2t

- WXM

7113 T 32

r 23 T 22

From Eq. (4.9) with the numerical values of the parameters and statistics of

the 9-state model kernels substituted, the mean waiting times of the states in class

1 are,

1P21 ?21 = 2000 seconds

P 2 22 ?2P32 + = 1.26 seconds

? 3+ P23 r = 16.296 seconds

With rM given in Eq. (4.4), r is given by

= Zi = 491.790 seconds

Then the stationary probability distribution in class 1 is,

Ir M 1 0.9748

I 2 )= 0.0145

r- 3 r3 = 0.0107

or,
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_ 0.9748 0.0145 0 .0 1 0 7 IT (4.13)

The stationary probability distribution in class 2 is evaluated in Appendix D and

the result is as follows :

?2) = (0.1250 0.6820 0.17t58 0.0093 0.0069T (4.14)

Class 3 consists of only one state, so the stationary probability distribution is,

[l3) (4.15)

4.2.3 Approximate Markov process

The Laplace transforms of the kernel elements of the approximate Markov

process were derived in Chapter 2 and they involve the time scaling factor 6. But 6

is only the scaling factor relating the temporal scales of the two processes. It can

be set to any value and the resulting rk(S) will be different for different values of

6. The enlarged process hence deduced will be related to the original process by the

time scale factor 6 set in the derivation of Ork(S).

The parameters 6, , Prk and Ak in Eq. (2.19) for kernel element _

completely define the enlarged process and Prk and Ak can be deriv-'1

parameters of the original semi-Markov process, as shown in F .-., 0

with the result that the enlarged process approximates ih r

semi-Markov process in a new time sca)e arJ an% r,'

enlarged process must be scaled tc tht original irio

representation of the original process is nt .'

and it will not be derived here. \\'hat f+ i 1,

the enlarged process of the 9-,it..,

-- . -' -. -
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2.5x10 4 sec', the same value as the failure rate e of each instrument. Then Eq.

(2.19) is reduced to,

Ok (') = P Ak (4.16)

which is exactly the result given in [4].

The procedure for calculating A1 is as follows (numerical resuts are quoted

from Appendix C):

q q,1 =q2 1
je El

=8000 (4.17)

q(1) (1 q1 +q

j. El

- 13.333 + 35.555
=48.888 (4.18)

]q l E q l =f q 13 + q23
~j E El

= 35.555 + 13.333
= 48.888 (4.19)

a a,,~ a-- J' 'j; - 21P21

= 2000 (4.20)

P) a, p~l a,,(1) + a ()
2~) '  .2 Pjp) aoo22 a32  2

jE E1

- 16.296 (4.21)

I " : W 'r' , ,q ' t' '¥ .p -" ' ' : : . ' " ' _v



i E ~ 3P3 2 ije 51

= 16.26 (4.22)

Substituting Eq. (4.17) to (4.22) into Eq. (2.22), then

4 00 + +8M8
A 1. MI + ssM2 +3

2ooo, MI + 16. 2 9W)M2 + 16.2 M3

=3 (4.23)

The procedure for obtaining P21 is as follows:

L21 d1 (1) (1)q 1 q~1 = q41

ie E2
=6000 (4.24)

qi) ;2 = q) + q12)
jeE 2

- 48.888 (4.25)

q32 ) E q = q 6 +q 3)
jE Eq

= 48.888 (4.26)

Substituting Eq. (4.20) to (4.22) and Eq. (4.24) to (4.26) into Eq. (2.21), then

6 0 0 0G M + 48. 8 8 8 M + 4.8 8 8 rM3

P2 1 = O + + .O.Zr M02M XM + 6.2 62M2 +16.2 w6r U3

=1 (4.27)

P21 equal to I implies that P31 equals 0 due to the fact that the sum of the eventual

transition probabilities exiting a state must be 1.



The procedure for obtaining A2 is as follow:

4v E

- 80 (4.28)

2 = () (2) +_ 2j" E E2  '"" ,.95
5

- 32.5,3 (4.29)

6' - E q 4
.PES 2

-32.593 (4.30)

(22) 
())2

.. E 2

= 32.593 (4.32)

- (2) (2) (

i'f E2

-40 (4.33)

*(2) -(2) (2) (2)
a 1:dasP 6a,, P.+ a65 P4

.u E 2
- 16.296(4.341
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j CE E2

- 16.296 (4.35)

a (2) =(2) a7 2 + a p ()

j e E2

- 16.296$ (4.36)

a (2' ) -  (2",) (2) (2)
A;B 48 P4 + a78 P7

jG E2
- 16. 6 (4.37)

substituting Eq. (4.28) to (4.37) into Eq. (4.22), then

0 .M + 32.593 1m + 32.5931 6 + 32.593 m7 + 32.593 12s

A2 =n40124 + 16.292 VMS + 16.292 fM +16.22 r91 + 16.2 928
M4 7 6 7

- 2 (4.38)

The procedure for obtaining P32 :

q132)u (2) 12)q4

i e E3

S80 (4.30)

32 : (2) Z
q;5 -q4

j E3

- 32.593 (4.40)

32 (2) (2)

- 32.593 (4.41)
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43')m m 7

- 2.5 (4.42)

q(32)ui = : 1iE E

- 32.M03 (4.43)

substituting Eq. (4.28) to (4.32) and Eq. (4.39) to (4.43) into Eq. (2.21), then

90 sm + 32.503 rms + 32.503 rM + 32.503 rm + 32.593 rms4 86 7
P3 -0 r 4 + 32.503 rus + 32.593 rm + 32.503 rm + 32.593 rM4 56 7 8

-1 (4.44)

P32 equal to 1 implies that P. equals zero.

Since clas 3 is a trapping class, it will not affect the result if it is assumed

that the numerical values of A3 and p33 are both 1. By summing all the results

obtained above, the Laplace transform of the transition kernel matrix of the

approximate aggregated Markov process is as follows:

0 0 0
3

-+" 0 0 (4.45)

2 10 m+2 +

or in the scaled time domain,

0 0 0

(f) -- 3e-3 0 0 (4.46)

0 2e-2' e-ti

* q q~
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By semi-Markov theory, the Laplace transform of the interval transition matrix can

be expressed as follows :

*(#)=Ie I+ (I- P)AJ- (4.47)

where s is the Laplace operator, I is the identity matrix, P is the eventual

transition probability matrix and A is a diagonal matrix whose i-th element is the

exponential transition rate out of 'state" i. So, for the approximate Markov

proem for the 0-state model, P and A are as follows:

0 0 0

PM 1 0 0 (4.48)

0 1 1

3 0 0

Am 0 2 0 (4.49)

1 0 0 1

Substituting Eq. (4.48) and (4.49) into Eq. (4.47) yields, after some

maipulations,
I

8+3 0 0

3 1
V (8) M (v + 2X# + 3) (s +2) 0 (4.50)

_ 2
L *i + 2X# + 3) 7(-o+ 2)

or in the scaled time domain,

, , - i i .. . "' ' "' " "' p . -* , ' ', ._ , .- - . ' ' ' , ' :. '
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e 0 0

)3( -e- - e) C- 2t 0 (4.51)
1 - 3,-2e+ 2,-3e I - 2e- 2t'  I1

Since the initial state probability vector used in the exact state probability

distribution histories calculation was assumed to be

j(0) =I 1 0 0 0 0 0 0 0 0 0JT, the state probability vector for the

approximate aggregated Markov process will be,

r'(0)MI 0 OJT (4.52)

By Eq. (1.1), the "state" probabilities of the approximate aggregated Markov

process are,

re(e)-= -3e (4.53)

e;(e) = 3(e - 2e - 3 e' )  (4.54)

re(t) = I - 3e-2t+ 2e-3t' (4.55)

The argument t'is used here in order to distinguish the different time scale used for

the approximate Markov process. The original semi-Markov g-state model is

defined in a faster time scale, denoted t. If the . (t) are expressed in this original

temporal scale, then Eq. (4.53) to (4.55) will, in general, become:

1r(t) = e-361 (4.56)

-(t) = 3(t- 2& - e-36) (4.57)
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3 ~2 (4.58)

or, in this example where 6-f, these three equations become,

r(t) = -3 (4.59)

e -) 3(e- 2d - -3 £) (4.60)

srj(t) = 1 _ 36- 2 d + 2e3t(4.61)

By expanding the approximate Markov process with the stationary

probability distributions of the non-perturbed decoupled processes obtained in Eq.

(4.13) to Eq. (4. 15), the approximate probability distribution for the &9state model

is,

S0.9748]

0.0145 J c3et

0.1250

()0.6820 (4.62)

0.1768 3( e- 2( - e-3 dt

0.0093

0. 0069

I (I 1 (13 2 d + 2e-3 di
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4.8 Comparison and Discussion of Results

The accuracy of the approximate approach depends on two key factors. The

first factor is how quickly and how accurately the normalizedl probability

distribution in each class of the 9-state model converges to the non-perturbed

stationary probability distribution. The second factor is how accurate the "state"

probabilities of the approximate aggregated Markov process are relative to the class

probabilities of the 0-state model. The comparison of results for the example

system in these two aspects follows:

First, the normalized probability distributions at the end of the mission, i.e.

at t = 3200 sec., obtained in Figure 4-1 and the analytical non-perturbed

stationary probability distributions obtained in Section 4.2.2 are compared in

Figure 4-7. The largest and the smallest relative percentage errors occur in state 3

and 5, respectively. The normalized probability trajectories for states 3 and 5 are

plotted in Figures 4-8 and 4-9 along with the corresponding analytical stationary

probability distribution value (a constant in each case).

In Figure 4-8 the state probability trajectory in state 3 starts to converge to

within 12% of the stationary value from t = 800 sec. onward and at the end of

the mission it converges to a value of 0.012, which is higher than the stationary

probability. In Figure 4-9, the state 5 normalized probability trajectory converges

faster to within 105% of the stationary probability from t = 350 sec. onward and

converges to within 0.5% or to a value of 0.88 at the end of the mission. The main

contribution to the large percentage error of the normalized probabilities in states 2

and 3 relative to the analytical stationary probabilities is due to the large step size

chonsen for the discretization of the 9-state model (step size was chosen for

compromise between accuracy and mission length). To illustrate this point, the
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normalized stationary stationary
class state probability probability probability relative %

distribution distribution distribution error
(numerical (analytical

1 0.9718 0.9719 0.9748 -3.0

1 2 0.0161 0.0162 0.0145 11.7

3 0.0119 0.0120 0.0107 11.7

4 0.1283 0.1179 0.1250 2.7

5 0.6789 0.6876 0.6820 -0.5

2 6 0.1749 0.1783 0.1768 -1.0

7 0.0101 0.0004 0.0003 0.6

8 0.0075 0.0069 0.0069 9.7

Figure 4-7: Comparison of normalized probability distribution at t=3200 sec.
and stationary probability distribution of the non-perturbed process

stationary state probability distribution within each class was obtained numerically

by running the 9-state model program for 800 time steps with -=0 and

x(0) = [ 10 0 1 0 0 0 0 1 ]. The result is the numerical stationary probability

distribution of the non-perturbed process which is shown in Figure 4-7. The class I

normalized probability distribution converges to the numerical stationary

probability distribution rather than the analytical stationary probability

distribution. From this, it can be concluded that the base-line results for the

normalized probability distribution are in error due to computational effects in the
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discretization of the governing matrix of the model.

The class probability trajectories from the semi-Markov approach were

obtained in Section 4.1 and the "state" probabilities of the approximate aggregateI

Markov process in closed form were deduced in Section 4.2.3. The results of these

two different approaches at 40, 80, and 800 time steps are compared in Figure 4-10.

t/sec. class Iumerical semi-Markov approximate Markov
approach process technique

1 0.9988 0.9988

160 2 0.1198e-2 0.1199e-2

3 0.4327e-6 0.4804e-6

1 0.9976 0.9976

320 2 0.2393e-2 0.2395e-2

3 0.1728e-5 0.1918e-2

1 0.9764 0.9763

3200 2 0.2346e-1 0.2352e-1

3 0.1698e-3 0.1895e-3

Figure 4-10: Comparison of class probability obtained from numerical semi-
Markov approach and from approximate Markov process technique

Figure 4-10 indicates that the largest absolute error between the two results is only

-_ ,, .i' iI -~t'll, PNi, VA , m I' li~i',i i~i'll w 'i,", , , ' ',,' ," , , ''"



-79-

0.0001 in class I at the end of the mission. This shows that the enlarged process

approximates the aggregated probability distribution of the exact model very well.

With the inaccurate base-line results taken into account, the absolute error of the

approximate state probability distribution, obtained by expanding the approximate

Markov process with the analytical stationary probability distribution as in Eq.

(4.82), will be less than 0.0000117 for any state beyond t = 800 see. This is only

1/2000 of the MTTF of each instrument.

The high accuracy of the enlarged process approximation led to a closer

examination of the example system. Undoubtedly, the model for this system is a

"pure" semi-Markov model because none of the transition kernel elements has an

exponentially distributed holding time. If the states in each class are examined

carefully, it can be found that all the states within each class represent the same

number of working and failed instruments. By combinatorial analysis, the time to

transition from class I to class 2 is exponentially distributed with a parameter of

3e. So the 9-state model class to class transition is intrinsically governed by a

Markov process. Although the 9-state model has this property, it is not non-trivial

to deduce whether the approximate technique did accurately approximate the state

probability distribution of a genuine semi-Markov process.

Because of this special property of the 9-state model, the approximate

technique will be further tested on several semi-Markov models in the next chapter.

IMM I
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Chapter 5

Further Tests of Approximate Technique
with 4-State Models

The approximate technique applied to the 9-state model was demonstrated in

the previous chapter. In order to further test the technique for other models that a

fault-tolerant system might produce without expending a lot of effort to create

large state space models, several relatively small 4-state semi-Markov process

models will be created in this chapter to simulate various fault-tolerant system

class to class transition structures and properties, and to evaluate the results of the

approximation technique.

There are five models to be examined in this chapter. Their detailed

descriptions appear below, but they will be summarized here. In case I, there are

two ergodic classes where the second class is a trapping class. Case II has the

property that ergodic class I can transit to trapping classes 3 or 4. The difference

between this case and Case I is that in Case III, class 2 can transit back to class 1.

The next example, Case IV, consists of two non-ergodic classes where class 2 is a

trapping class. Case V, the last model, comprises four classes, where classes 3 and

4 can be entered from both class 1 and class 2.

/
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5.1 Cam I

In this model, the semi-Markov process consists of four states, The state

transition diagram is shown in Figure 5-1.

I 

- .' I

class 2

Figure 5-1: State transition diagram for Case I

The process can be decomposed into two classes, namely class I and class 2, when

-=O. Class I comprises states I and 2 and class 2 comprises states 3 and 4. The

transition from class I to class 2 is through the small eventual transition

probability in terms of i from states I and 2 to states 3 and 4. However state 3

and state 4 cannot transit back to any of the states in class 1, henje class 2 is a

trapping class. The governing transition kernel matrix is given by the following:

a& -i I'
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0 (0.3 - 7oXIs_1 0 0

(t 4k'2S_' (0.7 - UP)X2 tX 0 0

20 xis GC'-it 0,4 toY 0 I6

whome X>1-2, X2=0.1, IM.ze ( anl uits are in seed)

It is assumed the initial condition i,

u()-(1 0 0 OJT (5.2)

On. point about this model to be emphasized is that the holding timne density

functions for the transitions from states in class I to states in class 2 and those

within clan 2 are 2nd order Erlang PDFs. These are non-exponential holding time

density functions, so the model is a semi-Markov process,.

Statioaary probability distributimof the unw-perturbed eui-Marao

By setting (-0 and dropping ill the holding time density functions in the

transition kernel matrix, the transition probability matrix of the non-perturbed

Markoy process is found to be:

0 0.3 0 0

PM 1 0.7 0 0 (5.3)

0 0 0.4 0.5

0 0 0.6 0.5

By raising the single step transition probability matrix successively to higher



perthe statkwway isterval tranitiom probability matrix is found to hb:

0.2M0 0.2=0 0 0

- 0760 0.7M0 0 0 (5.4)

0 0 0.4646 0.4"4

0 0 0.5456 0.5456

Then the stationary probability vectors of the so-perturbed imbedded Mrkov

processes in clam I and 2 are:

w~ 10.2308 0.760 IT (5.5.)

-2 10.4W4 0.5466 IT (5-5b)

The meas waiting times for the states in class I are,

Pi= -L=10 (5.6)21 X

-L + P2 8.5(572 1 1 X

Therefore the mean waiting time of the process in class I is

- j 1 Mi r8=8.8482 (.5.8)

Hence, the stationary probabilities in class I are

- -0.2609 15.9a)

- =0.7391 (5.96)
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or in veeto tamnE

j - 10.2M6 0.7391 IT (5.10)

The mea waiting times for the states in clms 2 ame:

X1 X2

=1315 4 I=i (5.12)

Therefore the meaning waiting time of the process in cLam 2 is,

E jr., t = 154 54  (5.13)

a E E2

Hence, the stationary probabilities in class 2 are,

IM

r(2) = 0.24 (S. 14b)

or in vector form,

?2) = 1 0.470.5 0.5295 IT (5.15)

Approximate Maz'koy process

In all the five cases in this chapter, the time scale factor 6 is set equal to

and a similar approach as in the g-state model example in the last chapter is used

for evaluating the approximate Markov process.

The Laplace transform of the kernel element for transition from aggregated

"state" I to aggregated "state" 2 is given by:
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*21 *) -(,16

A-iE (5.17)

* E

From the tranito kernel matrix in eq.(5.1),

Substituting .11 the numerical quantities in eq.(S. 15):

A - 0.XW X a + .?xR9 = 0.9391 (-00.230 x10 +0.762 x55 .

Obviously from the structure of the class to class transitions,

P21I 1 (5 21)

Therefore,

'02 (a) - 0.31(5 22)

" +0.93 
1

or in the scaled time domain,

021 (e) = O01 e- 0 .939 1 t'(.5231

Since there are only two classes and class 2 cannot transit to class 1. the

approximate probability in class 2 is given by,

I q *, it 1 q III , II S 15 * , , * " - %: -- * %*6~



r(V) - 21 (~d

-I- -. mi e8 (5.24)

&ad the approximate probability in clas I is,

.- 0.9301 e1  (5.25)

In the original time scale, this becomes

ir (0) - M x 2.5x 10 -4 (5.26)

If; (1) =I - e00 9 1 x 2.5 z 10-6 1 (5.27)

Exact solution of the or&igia seual-Markov process

The exact solution of the semi-Markov process is to be evaluated analytically

by using eq.(4.40). Although there are only four states in the model, the

manipulation will have to be helped by using a powerful symbolic manipulation

program called MACSYMA which resides in the Multics system at the

Massachusetts Institute of Technology. Two of the elements of the interval

transition probability matrix are obtained as follows:

#, (t) 0.030115 f e-2 .3 5e 8 t - e022990615 t

+ 0.23074 1e 2 35-6 - e-0 229MgSt 1

+ 5.384780e-7 I e- 0 .t + 0.538474 e-0 .1

+ 2.8333 SeC0 2 t (.8
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#2 1 (t) -o.=5 [1 -2.36 e-6 t eO.2299981 t]

+ 0.538W3 [ e- 2 35 " - _ O, S t

-( 5.769362e-7t + 0.538483 )e- 0 "1 t - 5.OOOe-5 e- 0. 2 t (5.29)

Since the initial condition was assumed in Eq. (5.2) to be ! (0) = 0 0 0 IT,

then

(5.30)

(2 1M21) (5.31)

Therefore the total probability in class I is,

PEI(t) r i (t) + 2 (t) (5.32)

Comparison of results

The approximate and exact total probabilities in class I at different time

points are compared in Figure 5-2. The results indicate that errors in the

aproximation occur only at the fifth decimal places through the time history up to

t=10000 with the maximum relative percentage error occuring at t=1000 at value

of only 0.0002%. This shows that the class probability is well approximated by the

enlarged process.

After the class probability results have been compared, the normalized

probability distribution within class I is compared with the stationary probability

distribution that is given in Eq. (5.9). The normalized probability distribution

history in class I is shown in Figure 5-3.

By comparing the stationary normalized probability distribution that was

established after 100 seconds with the stationary probability distribution of the

non-perturbed semi-Markov process in class I obtained in Eq. (5.9), it is found that

tM WML~ft ,. L - "1 % u
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t/sec. approximate class exact class
probability r' (t) probability PE1(t

1 0.99999 1.00000

5 0.99g 1.00000

10 0.99998 0.99999

50 0.99988 0.99990

100 0.99977 0.99978

500 0.99883 0.99884

1000 0.99765 0.99767

5000 0.98833 0.98834

10000 0.97680 0.97679

Figure 5-2: Comparison of approximate and exact probability in class 1

there is no error up to 4 decimal places. This implies that the semi-Markov process

is well approximated to within 0.0002% error after the transient period of 100

seconds at the beginning of the mission. The transient period is about 10 times the

maximum mean waiting time among the states of the non-perturbed process in

class I and 0.025% of the MTTF.

qP
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t/se. state I state 2

1 0.9075 0.0925

5 0.6510 0.3490

10 0.4791 0.5209

40 0.2707 0.7293

100 0.2609 0.7391

200 0.2609 0.7391

600 0.2609 0.7391

Figure 5-3: Normalized probability distribution in class 1

5.2 Case 11

In Case I, the semi-Markov process was well-approximated by the enlarged

process after the transient period. However, the model there is not general enough

to include different classes that class 1 can transit to, as is likely to be the case for

many fault-tolerant system models. Ironically, in the 9-state model there is not a

class that can transit to both of the other two classes. In order to investigate how

valid the approximation is, another model will be formed. It consists of four states

which decompose into three classes. Class 1 comprises states 1 and 2; classes 2 and

3 are just states 3 and 4, respectively. Class I can transit to classes 2 and 3 while

classes 3 and 4 are trapping classes. The state transition diagram is shown in

Figure 5-4 and the process' governing transition kernel matrix is defined as follows:

- t



0 (0.3 - 7e)X ,e-Xt 0 0

P(t) (1 - )X2eX 2 t (0.7 - 2,)X2e-X2t 0 0

2X 3 e-X3t  6X 3eX 3t X 3 e-X 39 0

4X 4 e_X4t 3eX4e- 4t 0 X 4e-x4t

where Xi--0.2, X2=0.1, X3 =0.4, X5 =0.5, e=2.5x10"6 , ( all units are in sec 1 ).

(2 II II2 class 1

NI\

... , class 2

4. class 3

Figure 5-4: State transition diagram for Case II

In this model and those that follow, all the transition holding time density

functions are exponential. However, different exponential functions are used for

different destinations from each state. This renders this model, and the models

that follow in this chapter, semi-Markov.

Approximate Markov process

Since the non-perturbed semi-Markov process for class I and the transition

I 
L~ince-t
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kernel elements for exits from class 1 are similar to those in Case I, the non-

perturbed semi-Markov process stationary probability distribution for class I and A

are the same. These results are repeated for convenience here,

j') = [0.2609 0.7391 IT,

A = 0.9391. (5.34)

However, there will be different eventual transition probabilities from aggregated

"state" I to aggregated "states" 2 and 3. They are evaluated as follows:

(1) (21)

iEE1  (3

where

q') = q(1) (5.36)i E El

j E 1

therefore,

and,

q(21) Z q(l) (5.37)

jE E2

therefore,
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q(21) __(1 2
311

q(21) q~-6

substituting these quantities into Eq. (5.35), then

P21 = 0.6111 (5.38)

Since class 1 can only transit to classes 2 and 3

P31 = 1 - P21 = 0.3889 (5.39)

Then the transition kernel elements exiting aggregated "state" 1 are,

021 (8) = 0.6111 0.9391 (5.40)

03 1 (8) = 0.3889 0.9391 (5.41)
a + 0.9391

If the initial state probability vector is,

Ir(O)-[1 0 0 o]T (5.42)

then the probabilities in classes 2 and 3 in scaled time t'will be approximated by:

71. (e) = 0.6111 [1 - e- 0 .939 1 t'J (543)

Tr (t) = 0.3889 [ 1 - e- 0.939 1 t'] (5.44)

or, in the original time scale,

11. (t) = 0.6111 [1 - e- 0 939 1 x 2.5 x 10- 6 t (5.45)

l3 (t) = 0.3889 [1 - e- 0.9391 x 2.5 x 10- 6 t (5.46)

3:,
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Exact solution of the original semi-Markov process

The exact solutions for 0 3 ,(t) and 41 (t) are evaluated analytically with the

help of MACSYMA. If the initial probability distribution is as in Eq. (5.42) then,

PE2 ) = #31 M (5.47)

PE3(t ) -= '#41 Wt (5.48)

that is,

PE 2(t) = 3.15232e-13 e- 0 .11500 [t 1.93859e12 sinh(O.114098t)

- 1.93859e12 coah(O.114998t)] - 1.02947e-6 e- 0 4 t

+0.61111 (5.49)

PE (t) = 3.15232e-13 e- 0 .11500 t [ -1.23364e12 sinh(O.114998t)

3
- 1.23363e12 cosh(O.114998 t) - 8.77778e-6 e- 0 St

+ 0.38889 (5.50)

It can be seen that the interval transition probability functions from state I to

state 3 and from state 1 to state 4 are a sum of exponential terms despite the fact

that all of the holding time density functions in the model are exponential.

Comparison of results

The exact and approximate class probability results in the closed form

obtained above are evaluated and compared at different time points up to 10,000

seconds in Figure 5-5. From the numerical results in the figure, it can be seen that

the maximum error occurs in the fifth decimal place up to t=10,000 seconds. The

approximate class probability distribution when all the probability in class I has

moved to classes 2 and 3, can be obtained by substituting Eq. (5.45) and (5.46) with

~ *- ~ WV
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exact approximate exact approximate
t/sec. class 2 class 2 class 3 class 3

probability probability probability probability
PE lre ~~~( t) P i r i

2 ~33

5 0.00001 0.00001 0.00000 0.00000

50 0.00007 0.00007 0.00005 0.00005

200 0.00029 0.00029 0.00019 0.00018

1000 0.00143 0.00143 0.00002 0.00091

5000 0.00713 0.00713 0.00455 0.00454

10000 0.01418 0.01418 0.00003 0.00002

Figure 5-5: Comparison of approximate and exact classes probabilities

t=oo. The results are:

7 r,, (oc) = 0.6111 (.1

ir (oo) = 0.3889 (5.52)

The class probability distribution at t=oo can also be obtained from the

exact solution in Eq. (5.49) and (5.50). All the terms in both equations except the

constant terms will vanish when t=oo, so the class probability distribution will be,

PE2(oo) = 0.6111 (5.53)

PE 3(oo) = 0.3889 (5.54)

I311 1



By comparing the exact and approximate results, it can be speculated that the

entire class probability history is well approximated by the approximate Markov

process.

It was demonstrated in this example that the class probability trajectory is

also well approximated by the approximate Markov process for a particular model

where a class can transit to two different classes.

5.3 Came III

The 9-state model and the models in Cases I and 11 do not yield an associated

aggregated model for which classes 2 or 3 can transit back to class 1. This

situation would arise in models of fault-tolerant systems that include on-line repair.

This provides the motivation to create a new model to demonstrate the accuracy of

the approximate Markov process for this situation. The new model is similar to the

one used in Case II in that class I can transit to both class 2 and class 3. However,

class 2 can transit back to class I in the new model. The state transition diagram

of this new model is shown in Figure 5-6. The transition kernel matrix is similar to

that of Case II except that there are transitions possible back to class I from class

2. This yields two new nonzero off-diagonal elements in the transition kernel

matrix, which is defined as follows:

0 (0.3- 7)Xleit 2X 1eXit 0

(1 - Sf)X'e- 2t (0.7 - 2)X,\e-2t 4tXqe- 2t  0

2(X 3e-x 3t & x3e3t (-6)JX 3e-X3t 0

4c,> 4e-4 3X4 -1Y 0 x4e- 4t

DO VIO



G class 2

- /

i \ -.

,... i> class 2

D class 3

FIlure -6: State transition diagram for Case M

where X -0.2, X2 m0.1, X3 =0.4, )5=0.5, e-2.5x i "e , ( all units are in see"

Stationary probability distribution of the son-perturbed semi-Maikoy

proce

The structure of the process in this case is different from that of Case 11

However, the non-perturbed process in class I is exactly the same as that of Cases I

and U. So the stationary probability distribution is the same as before, namely:

l= .160 0.7 391 IT5.56

Since classes 2 and 3 each consist of only one state, their stationary distribution

are.

?, ) = I IT (.5 w)

?,31 = [lIT
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Approximate )arkov procmn

Because of the similarity of this process with that of case il, some of the

parameters of the approximate Markov process are the same, and they are stated

here:

P21 '0.8111 (5.59)

P31 '0.3M8 (5.80)

Al1 -0.39 (5.81)

In this model, however, class 2 can transit back to class 1, so A., is calculated

as follows:

2 (2) (2)
A2  3 9i

X (2) 6 (2)
3 3
(2)

93_ (5.82)
d(2)
£3

where

q(2) = I: q ( 2  6
3'

jE E£2

jE E2

=2.5

Substituting these quantities into Eq. (.5.62)



A2 -6/2.5

m-2.4 (5.63)

Class 2 transits only to claws 1, therefore

0 12(8 2.4 (5.64)

Then the approximate aggregated Markov process in the new time scale is

characterized by the following Laplace transformed transition kernel matrix,

2.4[0 (s +2.4) 0 1
I~()- 0.6111 0.39 0 0 I(5.65)I ~ ~(+0.9391)__ J

[0.3M89 M 0 1

or in the scaled time domain,

F'(t) - 0.6111 x 0.93gl&0.939 0..4 0 (5.56)

03Ox 0.93ge-0 M39t 0o-

If the initia condition of the process is

r (0) 1 0 0 01 (IT7

then,

By using continuous time Ntarkov theory, the interval transition probability matrix

and then ve (1) in the original time scale are found to be:



Ire) 1.0710_ -1.6696 x 2.540O8 t 4.933 sinh(1.3824 x 2.SxIO-6 1)

+ 19-3373e7 coeh(1.3824 x 2.5x10 86 t) 1 (5.69)

z(t) = 4.1517-l -16 x 2.5x108 t einh(1.3824 x 2.5xl10 8 t) (5.70)

Ile (t) = 1.0710e-8 el1.6W x 2.5406 g -8.8103e+7 ainh(

1.3824 x 2.5xl01-s 9.3372e7 coeh(l.3824 x 2.5x1O-' t)
+ 0.9999 (5.71)

Exact solution of the original seuzi-Markoy process

The exact solution of total probability in each class in this example is

calculated numerically by the same matrix convolution sum method as was used for

the 9-state model. The normalized probability distribution in class I was

calculated analytically with the help of MACSYMA. The results appear below.

Coumparison of result.

The results for the exact and for the approximate class probability

distributions are compared in Figure 547. This example shows again that the exact

aggregated probability distribution is well approximated by the enlarged process

because the maximum errors occur only at the fifth decimal place.

The normalized probability distribution in class I is shown in Figure 5-8. It

can be seen from the normalized probability distribution history in Figure 5-8 that

stationarity is established after t=200 seconds When this is compared with the

stationary probability distribution of the non-perturbed process in class I that is

given in Eq. 15-56), it is found that they agree up to four decimal places

It has been emphasized here that in this model. there are transitionls possible

1 
"0 N *



exact approximate exact approximate
t/sw.c clam I clas 1 class 2 class 2

probability probability probability probability
PE (1) P f (1)

I 2 '2

10 0.99M 0.99998 0.00002 0.00001

100 0.9997 0.99977 0.000014 0.00014

20w 0.9993 0.99963 0.00028 0.00029

600 0.99M5 0.99883 0.00070 0.00072

1000 0.99772 0.99766 0.00139 0.00143

t/see. exact clas 3 approximate class 3
probability PE (t) probability wr (f)

10 0.00002 0.00001

100 0.00010 0.00009

200 0.00018 000018

500 0.00045 000046

1000 000089 0 00091

Figure 5-7: Comparison of approximate and exact classes probabilities
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t/see, state I state 2

0 1.00000 0.00000

10 0.4791 0.5209

50 0.26449 0.73551

100 0.26089 0.73911

200 0.2608 0.73914

500 0.26088 0.73914

1000 0.26086 0.73914

f1ture 5.{: Normalized probability distribution in class I

both out of and into class I and it has been shown from the results above that the

semi-Markov process is well approximated in this case when the enlarged process is

expanded by the stationary probability distribution of the non-perturbed process.

5.4 Case IV

For some fault-tolerant system semi-Markov models, there may be trapping

states among some classes of states. Under these circumstances, the ergodicity

condition in the Theorem presented in Chapter 2 will not be satisfied by these kind

of models. It is of interest to know whether the approximate technique will be

valid for some of these models. So, in this 4-state example, a model with two non-

ergodic classes is created where each class consists of two states. The state

ZN
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transition diagram is shown in Figure 5-9 and the process is governed by the

transition kernel matrix in Eq. (5.72).

(0.5 - ) -e-it  0 0 0

P(t) - (0.5 - 5e)X2e-X 2t (1 - gE)X 2e-)x 2t 0 0

WYX3EXY3 3 -X3t 0.4X3e-X3t 0

4t.34e-c4 ) 4e - 4 t 0.6X4e-4t X4e_X4t

where X I =0.2, X,2--0.1, X3 =0.4, X5 =0.5, e=2.5xI0 "6 , ( all units are in sec- ).

class I

I N / \

\ /

Cclass 2

Figure 5-9: State transition diagram for Case IV

Stationary probability distribution of the non-perturbed semi-Markov

process

By decomposing the transition kernel matrix, the transition probability

matrix of the non-perturbed imbedded Markov process is as follows:

ka - **F'** N ,*
, ' '
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0.5 0 0 0

0.5 1 0 0 (5.73)P--

0 0 0.4 0

0 0 0.6 1

By raising the transition probability matrix to successively higher powers until

stationary is established, the stationary interval transition probability matrix is

found to be,

0 0 0 0

P1 1 0 0 (5.74)

0 0 0 0

0 0 1 1

Therefore, the stationary probability vectors of the non-perturbed imbedded

Markov processes in classes 1 and 2 are:

M = 0 1 IT (5.76)

Hence, the stationary probability vectors of the non-perturbed semi-Markov

processes are,

j1) = 10 1IT (5.77)

j.2).ffi [o 1 1T (5.78)

L rq*-rMMq IV'.MNER ~V
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Approximate Markov process

The Laplace transform of the transition kernel for transitions from

aggregated "state" 1 to "state" 2 is given by

Al 
(5.79)021 (8) --P21 0+ Al

where

I a l -- (1) (1) ( .o

MiA - El (5.80)

i EE

From the transition kernel matrix in Eq. (5.72)

q(1) q(1)
2  -q22 --

2 P22 ?22 "1

Substituting the above quantities and Eq. (5.75) into Eq. (5.80) gives

0 (1)+Oxq 1 +9
Al -- -- =. (5.81)0 X T(.") + 10

I I

and from the structure of the model,

P2 1 = 1 (5.82)

So the transition kernel element for transition from aggregated "state" 1 to 2 in

new time scale is,

*21 ()- = 0. (5.83)8 +0.9
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or in the scaled time domain,

021 (t) = 0.9 e- 0 .9t '  (5.84)

Because there are only two classes:

=(e) e-0.ge (5.85)

' (5.86)

In the original time scale,

e (t) -0.9 x 2.5xi0 - 6 t
"1 (t)= (5.87)

re e-0. x 2.5x10 - 6 t
2 (t)(5.88)

Exact solution of the original semi-Markov process

Exact solutions in closed form of the total probability and normalized

probability distribution in class I were evaluated with the help of MACSYMA and

they are,

PEI (t) 'l (t) + 'r2 Mt (5.89)

t 1 (t) = Wi (t)/PE (t) (5.90)

't2 Mt = 7r2 (t)/PE1 Mt 5.1

where,
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z (t) = 1.00339x105 e -9 "9 " x 10 2 I - 1.00338x10 5 e - 0' ° X z °IO -it

+ 3.33334xl0 8- e- 4 "0x0-1 t + 7.50000x10- 6 e- 5 "x10 - 1 t

- 5.64401x10- 9  (5.02)

?r2 (t) = 1.54580x10- 12 
6-5.00014x l 0- 2  6.49386x10 16

cosh( 4.99991x10- 2 t ) - 6.49373x10 16 sinh( 4.99991x0- 2 t)1

- 1.00382x10 5 -9.99999xlO-2 t - 1.24998x10- 6 e- 4."x10 1 t

- 5.62498x10- 7 e-5.0 "x0-1 1.47474x10- 4  (5.93)

Comparison of results

The total probability of occupying class 1 obtained from the approximate

aggregated Markov process and from the analytical solution of the original semi-

Markov process are compared in Figure 5-10. The exact and approximate solutions

listed in the figure agree to four decimal places except after one million seconds

have elapsed where the error occurs in the fourth decimal place.

The exact normalized probability distribution history within class I is shown

in Figure 5-11. It can be seen from the results in the figure that the stationary

normalized probability distribution agrees with the stationary probability

distribution of the non-perturbed process in class I. The trajectory converges

within less than 0.0003 absolute error after t=100 seconds.

This example, which consists of two non-ergodic classes, shows that the

original process aggregated probability distribution history is well approximated by

the approximate process and that the normalized probability distribution in class I

converges to the stationary probability distribution of the non-perturbed process

after a brief transient period, even though this model violates the sufficient

condition stated in references [4, 5] that the non-perturbed classes be ergodic. The

= j * ' t~ ' & , .. ' d 4 J~4 d .. 4
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t/sec. approximate class 1 exact class 1
probability 2r; (t) probability 7re (t)

10 0.99907 0.998

100 0.99976 0.99978

200 0.99954 0.99955

500 0.90888 0.90888

1000 0.99774 0.99775

5000 0.98880 0.98881

10000 0.97773 0.97775

1000000 0.10527 0.10540

Figure 5-10: Comparison of approximate and exact probability in class 1

t/sec. state I state 2

10 0.55183 0.44817

100 0.00027 0.00973

200 0.00000 1.00000

500 0.00000 1.00000

Figure 5-11: Normalized probability distribution in class I

implication of this example is that some non-ergodic models can be analyzed with

M.MMitocmoff = I : 1 1 I ,'%I
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the approximation technique. This opens a wider scope of fault-tolerant system

models to be approximately analyzed by this technique.

5.5 Case V

The example model in this case, the last in this chapter, comprises four

classes, and both classes I and 2 can transit to class 3. This situation is found in

none of the models examined before. In this section, only the exact and

approximate probability in class 3 will be examined. The state transition diagram

is shown in Figure 5-12 and the process is characterized by the following transition

kernel matrix:

(I - 60f)XleXlt 0 0 0

0 (1 - gc)XeX 2t 0 0
Pt) = 0(5.94)

20cX3 e-X3t 6(X3 e-x3t X3e-X 3t 0

40cX4eX4 t  3 X4 eX4t 0 X eY- 4t

where X =0.2, X,2=0.1, X3 -0.4, X5 -0.5, c=2.5x10 6 . ( all units are in sec 1

States 1, 2, 3 and 4 are classes 1, 2, 3 and 4, respectively. Class 1 and 2 both

transit to class 3.

Approximate aggregated Markov process

The Laplace transform of the transition kernel elements for transitions from

aggregated "state" I to 3 and from aggregated "state" 2 to 3 are both given by:

03k(8) = P3k Ak ,k= ,2 (5.95)a +A k

From the parameters of the transition kernel matrix in Eq. (5.94), the following
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Cclass I

class 2

class 3

class 4

Figure 5-12: State transition diagram for Case V

approximate Markov process parameters are evaluated:

q(l) = q(l) = 60
q(31) 1)
q1  -q 4 1 2 0

I )  7l = 5

Therefore,

(1)

l 12 (5.96)r 1 )

and

(31)

P3 1 = -0.3333 (5.97)

,,,, ,., ,,.,:, ..,..:,,,,,. :,., .,. : . . . .. .......T.. . .. ... ...-..
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2) =,2

42 2

(32)

A2 = - = 0.0 (5.98)
2 (2

and

(32)
P32 q1 .BM7(5.9g)

(2)

So the kernel elements for transitions to "state" 3 of the approximate aggregated

Markov process are.

~ a =0333 2..L (5.100)

032 ()=0.6887 0-9 (5.101)
8 +0.9

or, in the scaled time domain,

031 (e') 0.333 x12 e-1 2 t' (5.102)

032 (e') =0.6867 x 0.0 e 0 .9 t,(5.103)

If the initial state probability vector is,

Ere (0) =[ 0.5 0.5 0 0 IT (5.104)

then the probability in class 3 is,

-. '*W. ,



r( ) =0.5 x 0.3333 ( I - -12 ) + 0.5 x o.M7( 1 - e-° t') (5.105)

or in the original time scale,

re (t) = 10.5 x 0.333 ( 1 - e- 12x 2"SxlO-6 t)

+ 0.5 x 0.87 ( I - e- 0.9 x 2 5x10 - 6 t ) (5.106)

Exact solution of the original semi-Markov process

The exact solution for the probability in class 3 is evaluated analytically with

the help of MACSYMA and the result is:

PE (t) = 0.5 f -6.66655x10 - 1 e-2 25x1 -0 6t - 1.12501x10- 5 e-4.OxlO- 1 t

+ 6.68667x10- I + 0.5 [-3.33308x10- 1 e-3 °x1O 5 t

- 2.50019xlO-5 e-4.OxlO - 1 t + 3.33333xO- 1  (5.107)

Comparison of results

The approximate and exact probabilities in class 3 are compared in Figure

5-13. It can be concluded from the comparison of results in the figure that the

approximate aggregated Markov process approximates well the behavior of a model

in which two classes can both transit to a single trapping class.
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i I I

t/sc.exact class 3 approximate class 3
probability PE Mt probability "r (t)E3r

10 0.00008 0.00006

100 0.00059 0.00057

500 0.00287 0.00285

1000 0.00569 0.00568

5000 0.02696 0.02604

10000 0.05062 0.05061

1000000 0.4647 0.46487

Figure 5-13: Comparison of approximate and exact probability in class 3

5.6 Closure

In this chapter, five models were created and. the approximte Markov process

technique were further tested beyond the 9-state model. The five different cases

represent a range of class to class transition structures which include transitions

from ergodic class to ergodic class, transitions from one class to two different

classes, two-way communicating classes, transitions from two different classes to a

single class, and non-ergodic classes. All the approximate aggregated Markov

processes in these five cases characterized the behavior of the exact aggregated 4-

state models very well. That is, the class probability distributions were well

approximated by the approximate Markov processes. Furthermore, the normalized

p. . . , .~. p p *-p=
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probability distribution trajectories converged almost exactly to the stationary

probability distribution of the corresponding non-perturbed semi-Markov process

after a brief transient period.

In conclusion, for these five models, the state probability distributions can be

well approximated by expanding the enlarged processes results with the stationary

probability distributions of the non-perturbed processes. It is speculated that in

general the approximate technique work well for most fault-tolerant system models.

However, there are some limitations for these results to be applied to certain types

of system models. These shortcomings will be discussed in the Chapter 7.

*1 - ~ 'S ~ ~ % '



Chapter 6

Relaxation of Ergodicity Condition

The second sufficient condition stated in Chapter 2 for the approximate

Markov process to be non-trivial is that the imbedded Markov chain of the non-

perturbed process within each class must be ergodie. However, it was shown in

Case IV in the last chapter that both elements of the approximate results can be

valid even when the non-perturbed processes are both non-ergodic. Although the

classes for Case IV are non-ergodic, the stationary probability distribution could be

found for both classes and they are unique. This led to further investigation of the

sufficient conditions for the semi-Markov processes to be approximated by the

approximate technique and the result is that Korolyuk's Theorem can be modified

as follows:

Theorem: If a semi-Markov process depends on a small parameter E

such that its state space can be partitioned according to Eq. (2.5) and is

time-scaled according to Eq. (2.7) and additionally if the transition

probability operators Pk for the imbedded Nfarkov process of the k-th

class of the non-perturbed semi-Markov process satisfies:

n

lir e.. . e] (8.1)
l - o0

Then the aggregated semi-Markov process can be approximated by the

enlarged process defined by Eq. (2.19).

Proof: The proof follows an identical line of reasoning to the proof in

Chapter 2 until the point where the functions 00)Cihs are shown to satisfy
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the system Eq.(2.16). The system equations can be rewritten in linear

equation vector form:

#rk (8)T ffi = ()T Pk (.2)

Postmultiplying the above equation by the operator Pk and using Eq.

(8.2) on the result gives:

-,k (8)T = (8)T p 2 (6.3)

By successively postmultiplying the system of equations and replacing

the left hand side by 4k(s)T, and averaging an infinite number of these

equations:

/ (8)T -  / ('9)T lim ; P(6.4)

Since the operator Pk defined by p ) satisfies Eq. (6.1), then, by linear
k i

equation theory, the solution of the system of equations in Eq. (6.4) is

independent of the superscript, that is:

"i (E)(8) = Or 09) i E Ek (6.5)

The remainder of the proof that the aggregated model is Markovian and

the derivation of parameters of the approximate Markov process will be

exactly the same as that of the remainder of the proof in Chapter 2.

This extended Theorem is a relaxation of the ergodicity sufficient condition

stated earlier in Chapter 2 imposed on the semi-Mlarkov process to be

approximated.

It is of interest to find conditions under which Eq. (6.1) is satisfied. Along



these lines, the following theorem is established:

Theom:

(1) If the imbedded Markov process, which is defined by the transition

operator Pk of the k-th class of the non-perturbed semi-Markov process

is ergodic,

or

(2) If it is nonergodic with one and only one eigenvalue of unity,

then the operator Pk satisfies Eq. (6.1).

Proof :

(1) By the ergodic Theorem,

lirn 1  k( * (6.6)

and,

urn urn P, lm(LEP P,} (6.7)
n --ooo n n -p o

1-1 1-1 Ir
where r is finite but large such that,

Pk Ik (6.8)

Therefore, Eq. (6.7) can be reduced to:

nr nr L. 69

n moo n -o'-
tin1 1=r+ I

By Eq. (6.8), it follows:

lirnI ZP = 1k=e e .. .]
n1- 00
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which proves the Theorem for this case.

(2) The operator Pk can be put in Jordan form by the following

transformation:

Pk = TAk T-' (6.10)

where T is a square invertible matrix with columns made up of the right

eigenvectors (or generalized right eigenvectors) of the operator Pk" By a

proper ordering, Ak has the form:

X 2  I
00

Ak--= Xi

0 iI J

where {X,... ,Xp} are the unit magnitude eigenvalues and J is a Jordan

form matrix containing all the eigenvalues of less than unit magnitude

on its main diagonal. (This form is known to exist for a stochastic

matrix Pk because the unit magnitude eigenvalues must have a full set of

linearly independant eigenvectors.) Therefore:

n rnlira 1 P J- ira 1 T AkT

n -. oo n -.oon n :

nT[ Ji L1 A -

n -- k

(6.11)

Since Ak has one and only one eigenvalue of one:
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lir F A = diagonal matrix with a single non-zero
n -=.* oo

1-I

element of unity on its main diagonal

because lir Y =.o and lim n
S"* 0 n i-f oI = and

Xj34 1. Because Pk is a stochastic matrix, the left eigenvector appearing

in the row of T" corresponding to the unit eigenvalue is 1]T

Therefore:

n[ m r A '] T- 1 "- OF (6.12)
n - 00n 1-1

Therefore:

n

T li IZA5JTI=T 0... 1... 0IT=(e.e
n 1ir TOOn k - ' - ' -

(6.13)

That is,

lim 1 Pk--"-[e e. . .e] (6.14)
1- 1

which completes the proof.

As an illustration of the implication of the sufficient condition stated in the

second Theorem, valid and invalid examples of state transition structures are in

shown Figure 6-2. Note that one of the valid examples in Figure 6-2a includes

periodic intraclass behavior. The invalid example in Figure 6-2b has 2 eigenvalues

of one because 2 trapping sets are present in single class.

As a result, fault-tolerant system models with non-ergodic classes that satisfy



to and from E1 ,EEEand i 34j

Ej

to adfo i Ej ni 34

to and from E EiEEandi 3j

to and from E 1  adi #i EE n i;-

Figure 6-2a: Valid non-ergodic classes



-120-

to and fromE i  , EEEandi 34j

Ej

I I I

to and fromE i  ,EjEEandi #j

Figure: 6-2b: Invalid non-ergodic class

the condition stated in Eq. (6.1) will be approximated well by the approximation

technique developed in this thesis. This explains why the approximate solution is

valid for Case IV in Chapter 5. Note that there may exist fault-tolerant system

models with non-ergodic classes in forms which do not satisfy Eq. (6.1) that may

also be treated by the approximation technique because the Theorem is a sufficient

but not necessary condition.
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Chapter 7

Some Limitations
on the Appro imate technique

The approximate technique were demonstrated to be successful for the 9-state

model and for five 4-state models in Chapters 4 and 5, respectively. The two

elements that comprise the approximate technique, namely the enlarged process

and the stationary probability distribution within each class, are valid for these

examples. However, there are limitations for the approximate technique to be

applied to certain types of system models. These limitations will be discussed in

this chapter.

In the derivation of the approximate Markov process in Chapter 2, the limit

of c was taken to zero for the aggregated semi-Markov model to behave as a

Markov process. This means that the failure rate of the instruments of a fault-

tolerant system have to be small enough for the results to be well approximated by

the enlarged process. One of the alternatives for investigating the V'alues of c for

which the approximate Markov process diverges from the original aggregated semi-

Markov model is numerical methods. The small parameter ( of the model in Case I

in Chapter 5 was varied and the enlarged process "state" probability history was

compared with the original semi-Markov model class probability history. The

largest absolute error in the class I probability history obtained from the enlarged

process is shown in Figure 7-1. It can be seen that the approximate Markov

process starts to diverge when E reaches the value 2.5x10-2, which is one fourth of

the slowest transition rate within class 1. The implication of this result is that the

_ I , . .- ,,, -,,;,, .,.,,,.--.,..,.-,-,,; ,- ... ,,- , ,. . . .- ;, .,,.NA-......- - . .,,,,\ ..
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largest absolute error
in class 1

probability history

2.5x10 6  1.8x10 5

2.5x10 4  1.3x10 3

2.5x10-3  1.6x10 2

2.5x10"2  1.2x10 "1

5xl0"2  2x10 -1

Figure 7-1: Largest absolute error in class 1 probability history obtained
from the enlarged process for the model in Case I

systems to be approximated must have a small failure rate or small perturbation

parameter relative to the transition rates within each class. If the result in this

particular case can be extrapolated to other cases, then E cannot be larger than 1

order of magnitude smaller than the slowest intraclass transition rate.

In semi-Markov process models, the classes are often defined by the number

of working and failed instruments. Occasionally, a system's system loss state is

defined by different numbers of failed instruments, e.g. one wrong isolation may be

as catastrophic as two uncovered failures. In these cases, the system model will

contain two or more non-ergodic classes. These non-ergodic classes may not satisfy

the relaxed sufficient condition defined by Eq. (6.1) and failure of the approximate

technique may result.

The restrictions mentioned in this chapter limit the class of fault-tolerant

system models to which the approximate technique can be applied. Note however
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that for a broad class of models, the relaxed sufficient condition is satisfied and the

validity of the approximate results is assured if c is small enough.
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Chapter 8

Summary, Conclusion and Suggestions
for Further Research

8.1 Summary of Theuim

Semi-Markov models of large fault-tolerant systems whose redundancy

management scheme employs sequential tests are usually intractable to practically

obtain the desired length of state probability distribution histories due to the high

computational cost. New methods to evaluate the state probability history of such

systems in an efficient way are needed because of the growing use of complex fault-

tolerant system designs.

This thesis has developed an approximate technique based on enlarged semi-

Markov theory for assessing the state probability distribution histories of models of

fault-tolerant systems that employ sequential tests in their fault detection and

identification logic. Emphasis was placed on the extension of the theory to fault-

tolerant system semi-Markov models. Secondary emphasis was placed on the

demonstration of accuracy of the two elements of the approximate results, which

involve expanding the enlarged process by stationary probability distributions. The

use and accuracy was examined for a O-state model and for various class to class

structures that mimic fault-tolerant system models. An extended theorem, with

the relaxation of the conditions tLat a fault-tolerant system model mulst satisfy for

it to be approximated by the enlarged process, has been presented. Also, the

limitations of the approximate technique to certain types of fatilt-tolerant sy'stems

X. #t J
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was discussed.

8.2 Conclusions and Contributions

The approximate technique developed in this thesis can be used to quantify

the performanceof those fault-tolerant systems with component failure rates small

relative to the fault detection and isolation decision rates. This thesis has shown

that the approximate technique can be a practical tool to simplify the

quantification of large complex fault-tolerant system performance and might also be

an efficient tool in the synthesis of such system designs.

The contributions of this thesis can be summarized as follows:

(1) Korolyuk's limit Theorem was extended by generalizing the form that

the transition kernel elements may take, in which they depend through

the holding time distribution on a time scale factor 6 in addition to

depending on the small parameter c that divides the state space of the

system into classes. An approximate technique based on this extended

Theorem was then presented, by which the state probability history of a

fault-tolerant system semi-Markov model can be approximated by

expanding a reduced order Markov process state probability history by

the stationary probability distributions of the non-perturbed processes

within the disjoint classes. The direct benefit of this approximate

technique is the reduction of the computational cost of generating

results. Therefore, models of large complex fault-tolerant systems

become tractable.

(2) The approximate technique has been presented here, primarily in

Chapters 3 and 4, in such a way so as to illustrate its usage from the



construction of a 9-state semi-Markov fault-tolerant system model to the

evaluation of the approximate solution for this model. Thus, the

material in these two chapters provides an outline of the general

procedures to be followed in approximating the behavior of many fault-

tolerant system semi-Markov models. In addition, approximate results

for five cases of different class to class transition structures for fault-

tolerant system models were examined where one of these models

contains two non-ergodic classes.

(3) Preliminary results were obtained for the effect of increasingly large E on

the error of the approximate technique.

(4) An extended theorem with the relaxation of the ergodicity condition

stated in Korolyuk's original work was presented and proved in Chapter

6. As a result, the approximate technique can be applied to a wider

scope of fault-tolerant system models which includes those with certain

types of non-ergodic classes. Another theorem also presented in Chapter

6, establishes properties of the transition probability operator Pk of the

imbedded Markov process for class k within the non-perturbed semi-

Markov process which imply satisfaction of the relaxed sufficient

condition.

8.3 Suggestions for Further Work

The results of the approximate technique and the limitations of it suggest

possible areas to which further consideration might be given. Some of these will be

listed below:

I. The realistic model that the approximate technique was applied to in
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this thesis is the 9-state model described in Chapter 3. One of the

assumptions in the model construction is that the failure rates of all

three instruments are the same. However, in more complex systems

there might be several types of instruments and each one of these may

have a different small failure rate. Then the models of such systems

would involve more than one perturbation parameter. The construction

of an approximate technique for such systems deserves investigation.

2. There may be situations for which the semi-Markov model of a fault-

tolerant system may be characterized by several different orders of mean

time to transition between states. This may arise when the false alarm

rate or repair rate is much slower than the fault detection and isolation

decision rate or the self-test decision rate but is still much higher than

the failure rate of the instruments. This gives room for the investigation

of accuracy and convergence of the approximate solution for models with

different combinations of relative order of perturbation parameters and

two or more different orders of mean holding time distributions for

transitions between states.

3. The ergodicity condition within Korolyuk's Theorem was relaxed in

Chapter 6, as a result a wider class of fault-tolerant system models can

be approximated by the approximate technique, but it is of interest to

know how many fault-tolerant system models in real situations fall into

the category of models that do not satisfy this relaxed condition. The

versatility of the approximate technique can be better understood if the

transition structures of general fault-tolerant system are better known.

4. In reference [51, the proof of a limit Theorem for semi-Markov processes,

from which the enlarged process is deduced, depends explicitly on the
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existence for each class Ek of the inverse operator [I-Pk+]k1' where,

I=identity operator

Pk=transition probability operator for the imbedded Markov process of

the non-perturbed semi-Markov

Hk=cesaro limit of the multiple step transition operator associated with

P k

As is stated in [5), if Ek is an ergodic class when =O then [I-Pk+JIk[ "1 is

guaranteed to exist. Hence, the ergodicity of Ek is a sufficient condition

for the existence of [I-Pk+Ilk]' which in turn is a sufficient condition for

the Theorem. However, ergodicity is not necessary for the existence of

the inverse operator. That is, ergodicity is not necessary for the

enlarged process to be valid and this was proved in the Theorem

presented in Chapter 6. Further understanding of this inverse operator

and the relationship with the relaxed condition may lead to further

relaxation of the conditions for applying the approximate technique.

This would allow application of these results to a even wider class of

fault-tolerant system models.

5. The effect of nonzero c on the error of the approximate results for case I

of Chapter 5 was examined in Chapter 6. This provides some insight

into the accuracy of the approximate solution with different ( for that

particular example. However, this needs further investigation for other

more general system models.

6. MACSYMA is a powerful symbolic manipulation tool and is also a

numerical evaluation software package. Perhaps the ultimate

application of the approximate technique developed here would be to
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develop a MACSYMA command "program" that will input the

transition kernel matrix of a fault-tolerant system model and evaluate all

the non-perturbed processes stationary probability distributions and

enlarged process state probability distribution histories in order to

directly generate the approximate state probability histories. This

package would greatly reduce the time required for reliability engineers

to design or to optimize the parameters of complex fault-tolerant

systems.

p . - - . , . . . . . . .~ * . - - ~ -' ..* -~ ~ -,~. ~ ~J6'
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Appendix A
Interval Transition Probability Matrix of

Semi-Markov Processes

A.1 Interval Transition Probability of Discrete Parameter Semi-Markov

Processes

The following material follows that of [3].

Let a time-invariant finite state discrete parameter semi-Markov process be

characterized by the transition kernel elements defined by,

pji (m) = pji hji (m)

Pr { transition i - j occurs at sample m
state i entered at sample 0 } (A.1)

The first step to derive the interval transition probabilities is to consider the

waiting time for each state, which is the length of time spent in a state following

its entrance before a transition occurs to the same state or to a different state. In

mathematical terms, if

wi (m) = Pr ( waiting time = m I enter i at 0] (A.2)

then,

N
wi(m) -- pji hji (m) (A.3)

t-I

In addition, if >wi(n) denotes the waiting time in state i is greater thlan n samples,

then
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00>W (n)- E w, (m) (A.4)
m-n+1

Now let bji(n) is defined as the probability that the discrete-time semi-Markov

process will be in state j at time n given that it entered state i at time zero. Then

by considering the possible ways that the process that started by entering state i at

time zero ends up in state j at time n, the following equation is reached,

N n
O, (n) = >w. (n) + E Pki F' Oj. (n-m) hk. (m)

k75 = st ft O
k-1 m-RO

i = 1,2,...N ;j 1,2,...N ; n = 0,1,2,...

to i 34i j 'i - i ~ j(A.5)

This equation can be placed in matrix form, if the following notation is adopted,

W(m)= {6 bw.(,,w(m) ), >W(n) -{6 .>w (n)},

{ Pal (m) }ji = pji hji(m)" (A.6)

Then by interchanging the order of summation, Eq. (A.5) can be rewritten as,

n

0p (n) -- >IV(n) + 1: 0 (n-m) [ P"H~m) 0 c (0) -- 1 (A.7)

m=O

A.2 Interval Transition Probability Matrix of Continuous Parameters

Semi-Markov Processes

In the continuous parameter case, let the semi-Markov process be

characterized by the transition kernel element defined by,

pji (t) pji hji (t) (.4.8).1' J' i

'M c '' "" - . . .. ""F 'e-, 3 - - - - - - - - - - - - , S' ", ", r',. V.4' ' , S. e',v.
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and the waiting time and waiting time greater than t are defined by,

N
w (t) = pi h,;(1) (A.9)

j-1

N (t) = I wi (r) dr (A.1O)

Then by similar lines of reasoning to the derivation in A.1, the continuous

parameter interval transition probability can be expressed as,

NtOji (t) -b . >W# ) + O k jk (t - 7') hki d7

k-I1
= 1,21 ... N j=1,2,.. Nt>0

t1 i -- j6.. = oi (A.11)

or in matrix form,

(t) -> t) + dr (t - r) [al(r)], 0(0) = I (A.12)

IIINi- X
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Appendix B
Characteristic of 2nd Order Erlang

Probability Density Function

An Erlang random variable T of order 2 is characterized by the following

probability density function:

T( t ) 2te - Xt  t > (B.I)
t 0 , otherwise

and a typical sketch of this function looks like the following,

to t

The function has the following characteristics:

Fexpected value of the random variable T, is given by:

* .~~" 'v: *- .**~&.*~~''c
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-- E[T]

f-- t fT(t) dt

f2 (B.2)

t', the time at which the function has a maximum value, can be evaluated by

differentiating the function once and setting the result equal to zero,

9 = x 2 e- { l- X } -- 0 (B.3)
dt

Therefore,

t*

a.

The cumulative probability up to time t is,

*

Pr{T< t* } = fT(t) dt

= shaded area
- 0.2642 (B.3)

V V ~ ~ V~rr. U ~ *V. - , ..... . J - V-
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Appendix C
Transition Kernel Elements of the 9-State

Model

Numerical values of parameters for the transition kernel elements:

Xo = .001 X -= 0.05 XF -= 0.1

X1 = 0.05 X M= 0.1 XF = 0.05

Transition kernel elements for transitions within class 1: The pji and

qji are defined by Eq. (2.2), and aji are defined by Eq. (2.26). The remaining

quantities are:

P21 (t) t e-(X0 + 3) t

( 1 - 6e } X0 + 3c )2 t e-(Xo + 3,) t
x o

S P21 =1
q21 = 6000

a21 = 2000

p22 (t) X 2WO t (XWl t + 1) e-(xWO + 'W1 + 3f)t

2 X2X 18WO X2 X
(XoX 1 )3  (w xi) 4

(XWO + X'W1 (X WO + X WO 4 W + ) ~-),0)W 3

1 ( >,+ w+ & )3 t2 e(IV+XW I + 3c) tWO

+o _E W2 }(w+w) 2  (w+w) 3
~~()WO + NWl) (XWO + XWO c

( Xwo + Xw + 3c )2 t e-(Xo + XWi + 3)
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P22 1 =0.148

P22= 0-111

P2 0.259
=2 8.888

q22 = 3n

a21=20

222 =13.333

p3  t)=X~.1 2 w + 1) e1(Xwo + x'Wi + 30 I

2 X 2xw 18 ~ X x

(Xwo + XW1  (XWO + XWi) 4

1 ( X 0 + x + 3c )3 t2 e-(XWO + IWI+ 31)I

X2 6 2

(Xwo + Xwi )I (Xo + >,Vl)

( Xwo + x + 3( )2 t e(XWO + N,+ 3f) It

P= 0.2g6321

P329 = 0.444

P32 = 0.740

q321 = 17.778

q32 = 17.778

a32 , 20

a322 = 13.333

P13 MI = P32 (1)

P23 M1 = P22 (M
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Transition kernel elements for transitions from class 1 to class 2:

P4 1 (1) = 3 f (Xo t + 1) e-(Xo + 3e)t
3X X 0 3 )2 feX + .3c)

(X0 + 3t )2
+ e 3 X0 +I 3& ) e-(,\O + 3t) t

3e)0 + 3 +

q4 1 -3000

q4 1, 3000

q41 =-- 6000

P52 (t) = e (Xwo Xw1 t2 +xwo t +Xw  t +1) e-(Xwo + Xwj + 3c) t

(XWO + xWI + 3( )3 2 W O  W1 W e

+ Jwo + Xw+ )

(Nwo + 1+ & )2 (XWO + XW 3 ) t e-(Wo + W I +3e)t

(X + X 1 + (XWy + + & ) e1 Xwo + IVI + 3e) t

q52 1 = 2.936

q52-,= 6.667

q523 -- 6.667

q5 2 - 16.297

P72(t) 2 c (XWOxwI +Wt2  XO t +XW1t +1) e(XWo + 1+ 3)t

4XWOXWi 1 (wo + x, + 3 )3 t2 e-(wo + Xw + 3)t
(Xwo + XW I + 3e )3 2

2 (XWO + XW1 ) + 3f)t.... e(WO + XWI 3

(+WO + 2+ 3 )2 (WO + X + 3( ) (WO + + 3t t

(Xwo + xw+ 3 ) (Xwo + w+ 3 ) e-XWo + w+ 3

6?jZ& fA~f.Z
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q721 = 5.g26
q722 = 13.333

q7 23 = 13.333

q7 2 I +qq7 2 1 + q723

= 32.592

P63 () = P52 (t)

PU (t) = P72 (t)

Transition kernel elements for transitions within class 2:

2 t e-(Al + 2e)
P 4 (t) = O.' XIt 

I+

{ O.9X 4 } ( X1 + 2E )2 t e-(XI + 2e)t

P54 = 0.9

q54 - 72

a 5 4 = 40

P74 (t) = . x, - 2)t

1{ .1 - e O.l .4 } ( X1 + 2c )2 t e-(XI + 2f)t

P7 4 = 0.1

q74 = 8

a 7 4 =40
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2 (XF t t + I) e- ( F o 
+ 'F I + 2ft

P55M XFO F 1) XOX12 X 1OXF +XeFI

FO ______

(XF+ + Fl XF + XF I
.( F0 F +2,f t1 e-x FO0+ XF I 

+ -2() t

+ ( Fo _ Fo
(x FO + A F 1 }2 (xFo + X F 1 )3

{XF0 + 'FI t 4- 21 )2 t e-{XF0 + 'F I + 2f) t

p55 -- 0.296

p552- 0.444

P5 5 -P5= + P5 5 , 0.740

q55 = 11.852

q55, = 11.852

q5.5 =q5 + q55, 23.704

a55 = 20

am, = 13.333

P6 5 t) 1 t (FO t + I ) e- F0 +  F I + 2( t
2 X2 x2X
2{X2tXo _ 2 XFIXo }

(XF++ XF+2 (xFo+ XFe
,( XFO + -F XFI + 2 )3 t2 eFF +.ALI

x4x
F l F IFl

(FO +> Fl (FO + XFI

XFO + XFl + 21 te-i F0 + F I + 2f
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paI= 0. 148

p65 = 0.111

P55 Ptis +1)65 2=0.251)

qs= 5.926

q6.5 2= 2Q863

q65 q65 I+ q65 2=8.889

a5= 20

1125  = 13.333

2371 = (xo t + 1) e-(Xwo + 'wI+ 2e )t

(X o+ w I)3 (Xwy0 + X )4

+ X ~ + 2c )3 t2 e-(Xvo +W + 2e)t

(Xo+ Xw '0 (w + 3~

w o ~~ W ,W + X + 2 t ) t e 1 X V 0 + X I I+ 2)t

t ~ ~ ~ ~ ~ ~ ~ ~~t 0 w I *~S*U- ~ S* ~ ~*
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P77 1=0. 148

P7 72 =0.111

P55 --P771 +P 77 2 = 0.25g

q77 1= 5.926

q77 2 =2.963

97 7 ='q7 7 1 + q77 2, = 8.88g

a77 , = 20

a77 , = 13.333

P87 ()w I(Xwot1eW

2X122x;{ 2w 1 Xw __XWO VV }
(x~~. + v I ) 3 (x\wo + XW I)

1 ( X ,y0 + X + 2( )3 t2 e-(Xwo + XW I + 2c)t

(xwo + xw 1 (Xwo + x~wI ) 3

(X,,y + XwI+ 2, )2 t e-(XWO + XVVI + )

P87 1= 0.296

P87 2= 0.444

p5 5 = p8 7, + 8, 074

q871 = 1. 8.5 2 =0.4

q8. 11.8-52

q8 7:= q8 7 + q,= 23.704
1 q8 2

a,-, = 20

8= 13.333

P48 (t) = P87 (t)
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P78 (t) - p (t)

Transition kernel elements for transitions from class 2 to class 3:

Pg4 (t) 2-- c (XI f + 1) e-(,\, + 2t

2)I +X V) 2 te(Xl + 2)t

(I+ 2e
+-f (X + 2 1)te-(X1+c~

(XI + 2c)

q941 I =2000

q94= 2000

q94 = q94I + q942 =4000

P95 (t) 2 (XFO XFI t
2 +XFO t +XFI I +1) e-(>F0 + ) CFI + 2c) t

4 X FOXFI I (-(XFO+'FI

(XFO + XFI +
2e)3 ;2 - F 0  FI

+ ( XFO+XFI) (XFO + XF +2 t e-(XFO + XF I + 2 )t

(XFO + XF 1 + 2( )2

+ 2 E (XF+ XF +2t)e-(XFO + XFI + 2f)t+ (XFO + 'FI + 2( FO F,"

1 5.926

= 13.333

q =qS + q9S., + q95 32.593
195 3 3

p96 () = Pg,5 t)
p

P
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P97 (t) 2 2e (Xwo XwI t2 +Xwo t +Xw t +I) e-(xwo + 1w + 2e)t

4XW XW +I I (xwo + XW + 2 )3 t2 e-(XWO +XWI + 2e) t(XWO + XWI + 2e )3 2!

(XWO + 'WI + 2)

(XWO+ ++ 2 )2 (WO + XW1 + 2c )2 t e-('Wo + + 2t

(xWO+ XW 2(XwO + W I + 2 ) (xwo + + 2)t

q97 = 5.926

q9 7 = 13.333

q97 = 13.333

q97 = q971 + q97 2 + q973 - 32.593

Pg8 (t) = pg7 ()

Since class 3 is a trapping class and consists of only one state, the form of the

tarnsition kernel is not important.

* ~ . .,* ~ ~ j .p d ~ t ~ ~ ~ f ~ I'a]
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Appendix D
Stationary Probability Distribution of the

Non-perturbed Semi-Markov Chain in
Class 2

By using the Eq. (4.10), the mean holding time for each transition for the

non-perturbed process in class 2 are

F 54 -- 2 = 40
74

r74 ? 54 = 40

P551 P55 2
?55  = ,a5 5 +-a 55, = 16

P5 5  I P55  -

r 65 P6.5 a a65 1 +  ---2 a 652 =- 17.14.3
P6 5  P6 5

- 765 - 17.143

5 75 16

7. --- 722 = 17.143

787 = f32 = 16

148 - 787 - 16

778 77 = 17-143

So the meaning holding time in each state unconditioned on the destination is

%*V• V * V V ~ **~-*- -. * ,. *. i * .i' - : *=
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calculated by Eq. (4.9) and is given as follows:

7 4 --40

=- 16.296

to 16.296

?7 - 16.296

8- 16.296

Then, the mean holding time of the non-perturbed process, as defined by Eq. (4.8),

in class 2 is

7 = 17.601

By using Eq. (4.7), the stationary probability distribution in class 2 of the non-

perturbed process is found to be,

ir4 = 0.12501

7rS = 0.68199

ir6 = O.17684

ir7 = 0.00929
ir, = 0.00689
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